
A frequency domain approach for localmodule identification in
dynamic networks ‹

Karthik R. Ramaswamy a, Péter Zoltán Csurcsia b, Johan Schoukens a,b,
Paul M.J. Van den Hof a

aDepartment of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

bDepartment of Engineering Technology, Vrije Universiteit Brussel, Belgium

Abstract

In classical approaches of dynamic network identification, in order to identify a system (module) embedded in a dynamic
network, one has to formulate a Multi-input-Single-output (MISO) identification problem that requires identification of a
parametric model for all the modules constituting the MISO setup including (possibly) the noise model, and determine their
model order. This requirement leads to model order selection steps for modules that are of no interest to the experimenter
which increases the computational complexity for large-sized networks. Also, identification using a parametric noise model
(like BJ method) can suffer from local minima, however neglecting the noise model has its impact on the variance of the
estimates. In this paper, we provide a two-step identification approach to avoid these issues such that the complexity of the
problem is independent of the complexity of the network. The first step involves performing a non-parametric indirect approach
for a MISO identification problem to get the non-parametric frequency response function (FRF) estimates and its variance
as a function of frequency. In the second step, the estimated non-parametric FRF of the target module is smoothed using a
parametric frequency domain estimator with the estimated variance from the previous step as the non-parametric noise model.
The developed approach is practical with weak assumptions on noise, uses the available toolbox, requires a parametric model
only for the target module of interest, and uses a non-parametric noise model to reduce the variance of the estimates. Numerical
simulations illustrate the potentials of the introduced method in comparison with the classical identification methods.
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1 Introduction

Real-life systems are becoming increasingly complex and
largely interconnected, leading to high interest in the
field of identification of large-scale interconnected sys-
tems known as dynamic networks. These networks can
be considered as a set of measurable signals (the node
signals) interconnected through linear dynamic systems
and can be possibly driven by external excitation signals
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and/or process noise. The node signals can possibly be
measured with sensor/measurement noise. Data-driven
modeling in dynamic networks can be broadly classified
into full network identification and local module identi-
fication. In the former, we deal with identification of the
full network dynamics [17, 34, 38, 40, 42], including the
aspects of identifiability [1,4,15,18,37,39], while the lat-
ter deals with identifying a particular module (system)
in a dynamic network assuming that the topology of the
network is given [5, 11–14,20,23,28–31,35,36,41].

In this paper, we deal with local module identification.
In [12,35], the classical direct method [21] for closed loop
identification has been generalized to the framework of
dynamic network. A local direct method has been intro-
duced in [30] for identification of dynamic networks with
correlated noise. While in direct methods node signals
are selected as predictor inputs, in indirect methods ex-
ternal excitation signals are the predictor inputs. Indi-
rect identification methods for dynamic networks have
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been presented in [12, 14]. An errors-in-variables (EIV)
identification framework for dynamic networks has been
introduced in [11]. The direct method [35] and the simul-
taneous minimization of prediction error approach [16]
have been extended to a Bayesian setting in [28] and [13]
respectively, where a regularized kernel-based method
has been used to minimize the mean-squared error of
the estimated target module. A generalized method that
relaxes the sensing and actuation schemes in a dynamic
network by combining the framework of direct and indi-
rect method has been introduced in [31]. All the afore-
mentioned approaches are time-domain methods. Fre-
quency domain methods for identification in dynamic
networks are scarcely explored. A fully non-parametric
frequency domain approach has been presented in [10].

In this paper, we aim at identifying a single target
module in a dynamic network with reduced complexity,
whose model order is assumed to be known. In direct
approaches [12, 30, 35], we typically need to perform a
MISO or MIMO identification that requires a param-
eterized model for all modules in the MISO or MIMO
structure. This embedding of the estimation problem
in a larger MISO/MIMO setting is necessary for deal-
ing with the network environment and for handling
confounding variables 1 . This requires the modelling
of additional modules that are not of prime interest to
the experimenter, so called nuisance modules, including
their model order selection using complexity criteria
like - as elaborated in [21] - AIC (Akaike information
criterion), BIC (Bayesian information criterion), CV
(cross-validation). For a large-sized network, this task
can be computationally demanding (see [28] for an
example). Moreover, direct approaches lead to biased
estimates in an EIV setting (i.e. dynamic networks with
node signals measured with sensor noise).

Indirect approaches like the two-stage method [35] and
the Instrumental Variable (IV) method [11] do not re-
quire handling of confounding variables and can be used
in an EIV setting, but they also require the embedding
of the single module in a larger MISO structure. In com-
parison with the direct method it is possible to slightly
reduce the complexity by refraining from estimating a
noise model, however it comes with the cost of increas-
ing the variance of the estimates. This issue has been
dealt with for general identification of SISO systems in
frequency domain by a semi-parametric approach with
a parametric model for the plant and a non-parametric
noise model [32, 33], and has been extended to MIMO
systems in [26, 27]. This latter philosophy we are going
to follow for addressing the above mentioned problems
in the identification of a single module in a dynamic net-
work.

1 A confounding variable is an unmeasured variable that
induces correlation between the input and output signal of
an estimation problem [24]. See [36] for a formal definition.

In this paper, we develop a semi-parametric frequency
domain approach that requires a parametric model only
for the target module of interest and incorporates noise
modeling through a non-parametric noise model. We fol-
low a two-step approach, where the first step involves a
MISO identification problem to get the non-parametric
frequency response function (FRF) estimate of the tar-
get module and also its variance, thereby avoiding para-
metric models in the MISO setup. In the second step,
the FRF estimate of the target module is smoothed us-
ing a parametric frequency domain estimator with the
estimated variance from the previous step as the noise
model, thereby reducing the variance of the estimate.
The particular advantages of the approach are that we
do not require any model order selection procedure, we
do not need to parametrically model nuisance modules,
and we obtain reduced variance results due to effective
noise modeling. Consequently, the complexity of the es-
timation problem is not affected by the complexity of
the network, but only determined by the local environ-
ment of the target module. The approach is practical,
implemented using the already available MATLAB tool-
box and can be implemented for a network with cor-
related noise and an EIV setting. In terms of achieved
properties, our method comes close to the recently in-
troduced regularized kernel-based method for dynamic
networks [29], in which nuisance models are modeled as
Gaussian processes. However this approach requires tun-
ing of hyperparameters.
After the presentation of the new method, numerical
simulations are performed for a dynamic network exam-
ple to show the effectiveness of the developed method
compared with both the direct method and the regular-
ized kernel-based method.

2 Problem statement

Following the setup of [35], we consider a dynamic net-
work that is built up ofL scalar measurable internal vari-
ables or nodes wjptq, j = 1, . . . , L. Each internal variable
is described as:

wjptq “
ÿ

lPNj

G0
jlpqqwlptq ` rjptq ` vjptq (1)

where,

‚ q´1 is the shift (delay) operator i.e. q´1wjptq “ wjpt´
1q;

‚ Nj is the set of node indices k such that G0
jl ı 0 ;

‚ G0
jlpqq are proper rational transfer function for j “

1, . . . , L and k “ 1, . . . , L;
‚ There are no self-loops in the network, i.e. nodes are

not directly connected to themselves Gjj “ 0;
‚ vjptq is the process noise, where the vector pro-

cess v “ rv1 ¨ ¨ ¨ vLsT is modelled as a stationary
stochastic process with rational spectral density
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Φvpωq, such that there exists a white noise process
e :“ re1 ¨ ¨ ¨ eLsT , with covariance matrix Λ ą 0 such
that vptq “ Hpqqeptq, where Hpqq is monic, square,
stable and minimum-phase. The situation of corre-
lated noise refers to the situation that Φvpωq and H
are non-diagonal;

‚ rjptq is a measured external excitation signal entering
node wjptq. In some nodes, it may be absent.

On combining the equation for all nodes in the network,
we obtain the network equation (time and frequency de-
pendence is omitted below),
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“ G0pqqwptq ` rptq ` vptq
(2)

The representation in (2) is an extension of the Dynamic
Structure Function (DSF) representation [15]. The dy-
namic network is assumed to be stable, i.e. pI´G0pqqq´1

is stable, and well posed (see [35] for details).

Every node signal is measured using a sensor, due to
which there can be measurement errors in the recorded
measured node signal of wk. Therefore the measure-
ment of wk accounting for the sensor noise is given by
w̃k “ wk ` sk, where sk is the sensor noise and is mod-
elled as a stochastic process with rational power spec-
tral density. This will be the EIV setting in dynamic
networks. The identification problem that we consider
in this paper is to identify the target module of inter-
est G0

ji from measurements of w and possibly r. To this
end, we choose a parameterization of G0

jipqq, denoted as
Gjipq, θq, that describes the dynamics of the module of
interest for a certain parameter vector θ̂ “ θ0 P Rnθ .

3 The direct approach

3.1 The standard direct method

The equation (1) represents a MISO structure and is the
starting point of the direct method in [35]. Let Dj de-
note the set of indices of the internal variables that are
chosen as predictor inputs and let R denote the non-
zero external signals in r. Let wDj

denote the vector
rwk1 . . . wkn

sJ, where tk1, . . . , knu “ Dj and let rR de-

note the vector rrk1
. . . rkn

sJ, where tk1, . . . , knu “ R.
In the standard direct method for dynamic networks
[35], identification of a module Gji can be done by se-
lecting a set of predictor inputs Dj such that i P Dj ,

and subsequently estimating a multiple-input single out-
put model for the transfer functions in GjDj . This can
be done by considering the one-step-ahead predictor 2

ŵjpt|t ´ 1q :“ Ētwjptq | wt´1
j , wt

Dj
u, and the resulting

prediction error ( [21]) εjpt, θq “ wjptq ´ ŵjpt|t ´ 1, θq,
given by

εjpt, θq “ Hjpθq´1
´

wj ´
ÿ

kPDj

Gjkpq, θqwk ´ rj

¯

(3)

where arguments q and t have been dropped for no-
tational clarity. The parameterized transfer functions
Gjkpq, θq, k P Dj and Hjpθq are estimated by mini-
mizing the sum of squared (prediction) errors: Vjpθq “
1
N

řN´1
t“0 ε2j pt, θq, where N is the length of the data set.

Let θ̂N denote the minimizing argument of Vjpθq. We
note that in the above formulation, the prediction error
depends also on the additional parameters entering the
modules that are not of interest, and on the noise model,
which needs to be identified to guarantee consistent esti-
mates of θ. Therefore, all these modules require a model
order selection step that could have a detrimental effect
in large-scale networks due to computational complex-
ity.

3.2 Predictor input selection

Predictor input selection (i.e. selecting Dj) plays an im-
portant role in the direct method, for guaranteeing that
the identified transfer function is an estimate of the tar-
get module G0

ji and not a biased estimate of the target
module. We call this as module invariance in networks.
In [35], the set Dj is chosen to be Nj (i.e. all in-neighbors
of the output of the target module). However, it is pos-
sible to choose a subset of Nj in Dj as predictor inputs
provided certain conditions are satisfied [12]. The main
condition is given in Property 1.

Property 1 To identify a target module Gji, consider
a set of internal variables wk, k P Dj. Let Dj satisfy the
following properties:

(1) i P Dj and j R Dj;
(2) Every path fromwi towj, excluding the path through

Gji, pass through a node wk, k P Dj (parallel path
condition);

(3) Every loop through wj pass through a node wk, k P

Dj ( loop condition).

When the above property is satisfied, the direct method
provides a consistent estimate of the target module, if
data informativity conditions are satisfied, and in addi-
tion there are no confounding variables for the estima-
tion problem wDj

Ñ wj . We use the identification setup

2 Ē refers to limNÑ8
1
N

řN
t“1 E, and wℓ

j and wℓ
Dj

refer to
signal samples wjpτq and wkpτq, k P Dj , respectively, for all
τ ď ℓ.
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of the direct method as the basis of the approach devel-
oped in this paper.

4 The frequency domain approach

4.1 Introduction

A special semi-parametric two-step indirect approach
can also be used for the identification of a single lo-
cal module. In the first step, a nonparametric indirect
method is used to get FRF and variance estimates of the
local module that is involved in the problem. In a sec-
ond step, the estimated nonparametric FRF of the local
module of interest is smoothed using a parametric fre-
quency domain estimator using the estimated variance
as a nonparametric noise model.

The semi-parametric approach offers two major advan-
tages. First, the method complexity is independent of
the complexity of the network. The complexity of the
first non-parametric step is set by the number of local
modules that need to be estimated in order to isolate
the local module of interest. Second, in the parametric
step, a parametric model is only estimated for the local
module of interest, in other words, the other modules are
not entering into the problem. Moreover, only the plant
model needs to be identified because a nonparametric
noise model that is obtained in the first step is used as
a frequency weighting.

4.2 Nonparametric FRF estimation

In this section we will use a special implementation of
the Local Polynomial Method (LPM) [26] for estimating
the FRF of the target module. The basic idea of LPM is
to cope with leakage and transient issues and it brings
two advantages:

‚ The approach is not restricted to periodic excitations,
it works well with noise excitation as well. Of course,
the advantages of using a periodic excitation still hold
true and we still advocate to use periodic excitations
whenever this is possible.

‚ The LPM estimate provides an FRF estimate for the
modules together with their co-variance matrices (as a
function of the frequency). In this step there is almost
no user interaction needed, and the complexity of the
identification problem is (almost) independent of the
size of the network.

We consider a straightforward, iteration free, direct im-
plementation of LPM calculated per excited frequency
lines as discussed in [8] and implemented in the SAMI
toolbox (Simplified Analysis for Multiple Input [7] [9]).
This toolbox offers a user friendly environment (GUI
or Command line driven) to make a full nonparametric
analysis of MIMO (non)linear systems.

Next, the LPM method is briefly elaborated. The LPM
relies on the following frequency domain nonparamet-
ric baseline model at the excited frequency lines, for a
generic input-output relationship:

Y pkq “ GpkqUpkq ` T pkq (4)

where,

‚ k represents an excited frequency line (bin)
‚ Y is the output signal in the frequency domain with
ny outputs (dimension of Y is ny ˆ N , dimension of
Y pkq is ny ˆ 1);

‚ U is the excitation signal in the frequency domain
with ni inputs (dimension of U is ni ˆ N , dimension
of Upkq is ni ˆ 1);

‚ T represents the (autonomous) transient term (dimen-
sion of T is ny ˆ N , dimension of T pkq is ny ˆ 1)

Because the FRF and the transient are smooth [6], it is
possible to use polynomial approximations such as the
LPM. In the process, a (narrow) sliding processing win-
dow is used with a polynomial degree of d. First, an ex-
cited frequency line is selected (denoted by frequency
index f), this is called the central frequency. This is the
middle point of the processing window. Around this fre-
quency line, in a ˘d{2 radius, a narrow band is selected
such that the r (radius) is given by

r “ t´
d

2
u . . . 0 . . . r

d

2
s. (5)

In this band (f ` r) all the (excited and non-excited)
frequency lines are used to estimate the transfer func-
tions in polynomial form. The measured output is at the
excited frequency index f in a radius of r as follows:

Y pf ` rq “ Gppf ` rqUpf ` rq ` Tppf ` rq ` Epf ` rq

(6)

where Gp and Tp are polynomials of order d. The poly-
nomials are given by:

Gp “

d
ÿ

s“0

gsr
s “ g0 ` g1r ` ¨ ¨ ¨ ` gdr

d (7)

Tp “

d
ÿ

s“0

tsr
s “ t0 ` t1r ` ¨ ¨ ¨ ` tdr

d (8)

The LPM parameters at the center frequency f can be
estimated by the following LS cost function:

η̂pfq “ argmin
ηpfq

ÿ

r

|Y pf ` rq ´ Gppf ` rqUpf ` rq

´Tppf ` rq|2 (9)
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where η̂pfq represents the estimates of the LPM polyno-
mials (i.e. the terms in (7,8)) at frequency index f . In
(7) the estimated value of g0 corresponds to G, i.e. the
quantity of interest.

The LS problem stated in (9) is recommended to be
solved output channel per output channel. In this case,
for each frequency line there are pd ` 1qpni ` 1q un-
known parameters to be estimated; (pd ` 1qni in Gp,
and d` 1 in Tp). This means, for the algorithm to work,
the bandwidth r should be at least as wide as the num-
ber of unknown parameters. In this work we consider
second degree polynomials (d “ 2). The restriction on
the minimum bandwidth also implies that in the FRF
measurements, in the (-3 dB) bandwidth of the lowest
damped mode (the sharpest peak in the FRFs) should
be at least pd ` 1qpni ` 1q points measured. By further
increasing the bandwidth of LPM, an increased smooth-
ing of the nonparametric estimate over the frequency is
obtained. However, a too large bandwidth will create a
bias. Since the FRFs will be further smoothed in the sec-
ond parametric step, the perfectly chosen parameters of
the smoothing processing is less crucial. Note that (9)
must be solved with the help of a numerically stable in-
version method.

4.3 The nonparametric indirect method

The previous subsection contains the formal definition
of the LPM method. In the dynamic network setup, an
indirect method is used.

First, the transfer is estimated between the non-zero ex-
ternal excitation signals rk, k P R and the nodes wk, k P

Dj . This is reflected in the frequency domain through
the following MIMO problem:

WDj pf ` rq “ SDjRpf ` rqRRpf ` rq ` T pf ` rq (10)

where,

‚ WDj is the node value in the frequency domain for the
node signals in wDj

;
‚ RR represents the reference signals rR in the frequency

domain;
‚ SDjR is the Frequency Response Matrix (FRM) i.e.

collection of FRFs, between the reference signals in rR
and node signals wDj

;
‚ T represent the (autonomous) transient term.

This problem is solved with the help the proposed LPM
method such that the estimated FRM ŜDjR is obtained
between the reference signals rR and the nodeswDj . Note,
that for a unique solution, it is required that RR is full
rank.

In the next step we use the estimated FRM to construct
a disturbance-free version of the node signals that are

going to be used for estimating the target module,

ŴDj
pf ` rq “ ŜDjRpf ` rqRRpf ` rq. (11)

This is done by estimating the transfer between ŴDj

and the output of the target module using the following
relationship:

Wjpf ` rq “ GjDj
pf ` rqŴDj

pf ` rq ` T pf ` rq (12)

where

‚ Wj is the measured node value of the output of the
target module in the frequency domain;

‚ GjDj
is the FRM between the target module and the

nodes in wDj
.

This problem should be solved again with the help of the
proposed LPM method such that the estimated FRM
ĜjDj

is obtained. We can now isolate the local module
Ĝji in the FRM estimate ĜjDj

.

4.4 Parametric processing

One must post-process the non-parametric local mod-
ule Ĝji in order to obtain the parametric rational trans-
fer function form Ĝjipθq. In this work, a weighted least
squares estimation is used for the identification:

V pθq “
1

F

ÿ

f

|Ĝjipfq ´ Ĝjipf |θq|2

σ̂2
Ĝji

pfq
(13)

where

‚ θ represents the parameters in the parametric local
module estimate;

‚ F is the number of frequency components;
‚ σ̂2

Ĝji
is the non-parametric co-variance estimate of the

the local module estimate obtained from the LPM
method [8, 26].

In order to minimize the cost function given in (13) the
FDIDENT toolbox is used [19].

4.5 Reflection

The presented method combines a two-stage indirect
method for estimating a local module, and combines this
with a non-parametric noise model to reduce the vari-
ance of the final parametric module estimate. The use of
the non-parametric noise model is particularly enabled
by the fact that the problem is addressed in the fre-
quency domain. Additionally there is no need for para-
metrically modeling nuisance modules, typically present
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in MISO network estimation problems, and therefore ex-
tensive model order selection procedures are avoided.

In the next section, we compare the performance of the
developed method in this paper with the nonparamet-
ric regularized kernel-based method developed in [28]. In
this method, keeping a parametric model for the mod-
ule of interest, we model the impulse response of the re-
maining modules in the MISO structure as zero mean
Gaussian processes with prior covariance matrix (kernel)
given by the first-order stable spline kernel [3, 25]. This
kernel encodes the properties like stability and smooth-
ness of an impulse response. The kernels are dependent
on hyperparameters. By tuning the hyperparameters, it
is possible to reduce the mean squared error (MSE) of
the estimates through bias-variance trade off [2]. The hy-
perparameters need to be tuned such that the MSE is re-
duced. Using an Empirical Bayes (EB) approach [22], the
hyperparameters are tuned and the target-module pa-
rameters are estimated by maximizing the marginal like-
lihood of the data. This method, similar to the method
developed in this paper, circumvents the problem of
model order selection for the nuisance modules in the
identification setup. Even though the compared regu-
larized kernel-based method circumvents the problem of
model order selection, it involves the complexity of tun-
ing the hyperparameters. However, this is avoided in the
developed method.

5 Numerical Simulations

Numerical simulations are performed with a dynamic
network example as given in Figure 1, to evaluate the
performance of the developed method discussed in Sec-
tion 4, which we abbreviate as “iLPM + ELiS" (indi-
rect Local Polynomial Method combined with ELiS cost
function). We compare the method with the standard
direct method “DM+TO" [35] and the Empirical Bayes
Direct Method (“EBDM") [28]. The goal is to identify
G0

31. The network example is the same network as in [29],
with the only difference in the presence of r1 signal. The
network modules in Figure 1 are given by,

G0
31 “

q´1 ` 0.05q´2

1 ` q´1 ` 0.6q´2
“

b01q
´1 ` b02q

´2

1 ` a01q
´1 ` a02q

´2

G0
32 “

0.09q´1

1 ` 0.5q´1
;

G0
34 “

1.184q´1 ´ 0.647q´2 ` 0.151q´3 ´ 0.082q´4

1 ´ 0.8q´1 ` 0.279q´2 ´ 0.048q´3 ` 0.01q´4
;

G0
14 “ G0

21 “
0.4q´1 ´ 0.5q´2

1 ` 0.3q´1
;H0

1 “
1

1 ` 0.2q´1
;

G0
12 “ G0

23 “
0.4q´1 ` 0.5q´2

1 ` 0.3q´1
;H0

2 “
1

1 ` 0.3q´1

H0
3 “

1 ´ 0.505q´1 ` 0.155q´2 ´ 0.01q´3

1 ´ 0.729q´1 ` 0.236q´2 ´ 0.019q´3
;H0

4 “ 1.

G21w1G14w4 w2 G32 w3

r4 r2

G12 G23

G34

H4

G31

H2H1 H3e2

e4 e1 e3

r1

Fig. 1. Network example with 4 internal nodes, 3 reference
signals and a noise sources at each node.

We run 100 independent Monte Carlo experiments where
the data is generated using known reference signals r1ptq,
r2ptq and r4ptq that are realizations of independent white
noise with variance of 0.1. The number of data samples
is N = 500. The noise sources e1ptq, e2ptq, e3ptq and e4ptq
have variance 0.05, 0.08, 1, 0.1, respectively. We assume
that we know the model order of G0

31pqq. In the case of
the direct method, we solve a 3-input/1-output MISO
identification problem with w1ptq, w2ptq and w4ptq as in-
puts. For the direct method, we consider that the model
orders of all modules in the MISO setup are known. The
EBDM [28] considers the target moduleG0

31 in the above
MISO identification problem as parameterized and the
rest of the modules (nuisance modules) in the MISO
setup are modeled as zero mean independent Gaussian
processes, whose covariance matrices are described by a
stable spline kernel which encodes stability and smooth-
ness of its impulse response. Each nuisance module is
described only by two hyperparameters of the kernel,
thereby reducing the number of parameters. The model
order of the target module is considered to be known.
The length of the impulse response of each module in
the EBDM is considered to be ℓ “ 50. The indirect
LPM (iLPM) method uses a second order polynomial.
For this configuration the minimal required bandwidth
should be at least 12 (i.e. pd`1qpni `1q “ 3ˆ4). Due to
the excessive noise on the signals, the bandwidth should
be higher. Using a simple Least Squares fitting method,
the bandwidth has been set to 24, which is sufficient to
reduce the effect of the noise and still give a small bias
error.

To evaluate the performance of the methods, we use the
standard goodness-of-fit metric,

Fit “ 1 ´
}g0ji ´ ĝji}2
}g0ji ´ ḡji}2

,

where g0ji is the true value of the impulse response of
G0

ji, ĝji is the impulse response of the estimated target
module and ḡji is the vector with the sample mean of
values in g0ji as its elements. The box plots of the fits of
the estimated impulse response of G31pqq are shown in
Figure 2, where we have compared the Direct method
with true model orders (‘DM+TO’), the Empirical
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Fig. 2. Box plot of the fit of the impulse response of Ĝ31 ob-
tained by the developed method, Direct method and EBDM.
Number of data samples used for estimation is N = 500.
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Fig. 3. Bias and standard deviation of each parameter ob-
tained from 100 MC simulations using different identifica-
tion methods.

Bayes Direct Method (‘EBDM’), and the developed
method (‘iLPM+ELiS’). A Box plot shows the follow-
ing distribution properties: minimum/maximum values
(buttom/top lines), 1st-3rd quartiles (rectangular area),
median (line in the middle), and (dotted) outliers. It
can be noted that the median of the fit of the developed
method is higher that the other considered methods.
Figure 3 shows the mean and standard deviation of the
parameter estimates of G31. It is evident that the devel-
oped method (‘iLPM+ELiS’) gives a smaller bias and a
reduced variance (in particular when considering param-
eter b2) compared to the other considered identification
methods. This can also be confirmed from the box plot
of the parameters of Ĝ31 in figure 4. The reduction in
variance is attributed to the implementation of a non-
parametric noise model and it can be witnessed that it
is on par with the EBDM which is expected to provide
reduced variance due to incorporation of regularization
in its approach. The mean and standard deviation on
the mean of the FRF estimated from 100 MC simula-
tions is shown in figure 5. It can be observed frequency
response plot that the error between the true value and
the mean value is far below the standard deviation,
indicating that the developed method is unbiased.

Considering a relatively small sized network with 3 mod-
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Fig. 4. Box plot of the parameters of Ĝ31 obtained by the
developed method, Direct method and EBDM. Number of
data samples used for estimation is N = 500.
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Fig. 5. FRF plot showing 1) the error between the true value
and the mean value (dotted lines) and 2) the standard devi-
ation on the mean of the FRF (dashed lines), for the devel-
oped method (red) and EBDM (blue) calculated from 100
realizations.

ules in the MISO structure, the developed method proves
effective. When the size of the network grows, the re-
sults of the direct method may deteriorate further due
to increase in variance; furthermore, it is expected that
in large networks the model order selection step con-
tributes to inaccurate results. The developed method re-
quires a parametric model only for the target module
and circumvents the problem of model order selection.
Also, the incorporation of a non-parametric noise model
substantially reduces the variance in the target module
estimate and also avoids the problem of local minima
that can occur in a parametric noise model as in the di-
rect method. Thus the developed method is expected to
serve as an effective local module identification method
also in large dynamic networks.

Remark 1 Being an indirect approach, the developed
method also provides consistent estimates in an EIV set-
ting [35], thereby allowing our measurements to be dis-
torted by sensor noise.
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6 Conclusions

A two-step indirect local module identification method
has been developed in this paper. The developed method
(‘iLPM+ELiS’) avoids the problem of model order se-
lection for all the modules that are of not interest to the
experimenter, but still needs to be estimated in order to
obtain consistent estimate of the target module. Due to
the incorporation of a non-parameteric noise model, we
achieve a clear benefit in the mean square error of the
estimated target module and also the benefit of avoiding
possible local minima when a parameteric noise model
in used. Therefore, the developed method is less com-
plex and scalable to large sized networks. This is the
most important advantage: the complexity of the prob-
lem is independent of the complexity of the network. It
only depends on the complexity of the block to be iden-
tified. Furthermore, the method is built on using the al-
ready available toolbox SAMI and FDIDENT, making it
practical and user-oriented. Numerical simulations per-
formed with a dynamic network example illustrate the
potentials of the developed method on comparison with
already available methods. The developed method pro-
vide target module estimates with greatly reduced bias
and variance in comparison with the other compared
methods for local module identification.
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