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a b s t r a c t

Dynamic optimization is applied for throughput maximization of a semi-industrial batch crystallization process.

The control strategy is based on a non-linear moment model. The dynamic model, consisting of a set of differential

and algebraic equations, is optimized using the simultaneous optimization approach in which all the state and

input trajectories are parameterized. The resulting problem is subsequently solved by a non-linear programming

algorithm.

The optimal operation is realized by manipulation of the heat input to the crystallizer such that a maximal allowable

crystal growth rate is maintained in the course of the process. Effective control of the crystal growth rate in batch

crystallization processes is often crucial to avoid product quality degradation. To be able to effectively track the

maximum crystal growth rate, the optimal heat input profile is computed on-line using the current system states

that are estimated by an extended Luenberger-type observer based on CSD measurements. The feedback structure of

the control framework enables the optimizer to reject process uncertainties and account for plant-model mismatch.
It is demonstrated that the application of the proposed on-line optimization strategy leads to a substantial increase,

i.e. 30%, in the amount of crystals produced at the batch end, while the product quality requirements are fulfilled.

© 2009 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
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. Introduction

atch crystallization processes are of paramount importance
n the production of pharmaceuticals, food and specialty
hemicals in the highly competitive chemical industry. Due
o low-volume and high-value of such chemicals, interest in
he optimal operation of batch crystallization processes has
ubstantially grown in recent years. The main operational
hallenge in these processes is to increase the productivity
hile satisfying the product quality and batch reproducibility

equirements.

The control of batch crystallization processes is con-

entionally performed by manipulating the supersaturation
rajectory due to its relationship with the fundamental crys-
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tallization phenomena, e.g. nucleation, growth, etc. The
supersaturation level is normally kept low, well within the
metastable region to be able to better fulfill the product quality
specifications, namely the purity of crystals, crystal habit and
crystal size distribution (CSD). There is a wealth of literature
on the improved operation of cooling batch crystallization that
mainly concerns the implementation of programmed cool-
ing profiles (Mullin and Nyvlt, 1971; Mayrhofer and Nyvlt,
1988). This is however inadequate if the process productivity
is to be increased since low levels of supersaturation hinder
the throughput maximization due to minimal crystal growth
niversity of Technology, Mekelweg 2, 2628 CD Delft,

09; Accepted 24 September 2009

rates.
In order to alleviate the foregoing deficiency of conven-

tional control policies, a trade-off between the maximization

neers. Published by Elsevier B.V. All rights reserved.
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Nomenclature

B0 total rate of nucleation (# m−3 s−1)
C solute concentration (kgsolute kgsolution

−1)
C* saturation concentration (kgsolute kgsolution

−1)
Fp product flow rate (m3 s−1)
G crystal growth rate (m s−1)
Gmax maximum crystal growth rate (m s−1)
g growth rate exponent
H specific enthalpy (kJ kg−1)
KV volumetric shape factor
kb nucleation rate constant (# m−4)
kg growth rate constant (m s−1)
k1 constant coefficient
k2 constant coefficient
L crystal size (m)
mi ith moment of the crystal size distribution

(# mi m−3)
n number density (# m−3 m−1)
Q heat input (kW)
t time (s)
tf final batch time (s)
V crystallizer volume (m3)
xest estimated system states
ymeas measured process outputs

Greek letter
� density (kg m−3)

Subscripts
c crystal
L liquid
pv process value
sp set-point
v vapor

probe (LiquiSonic®, SensoTech, Germany) is utilized to detect
of batch throughput and the achievement of sufficient prod-
uct quality has to be sought by satisfying various constraints
defined on the supersaturation level and most likely other
process inputs and outputs. The control problem of a batch
crystallizer is therefore well suited for a model-based control
approach by means of dynamic optimization.

In the past decade, the use of dynamic optimization for
model-based control applications has received considerable
attention in the light of the emergence of computationally
powerful modelling and optimization tools, as well as more
efficient dynamic optimization approaches. The current prac-
tice however favors the open-loop implementation of off-line
optimized profiles (Miller and Rawlings, 1994; Lang et al., 1999;
Hu et al., 2005; Nowee et al., 2007). This is not an effective
optimal control strategy as the performance of the off-line
optimized profiles is often deteriorated due to plant-model
mismatch, unmeasured process disturbances and irrepro-
ducible start-ups, i.e. unknown initial conditions.

To be able to effectively cope with the inherent shortcom-
ings of the open-loop control strategy, the optimal operating
policies can be computed in an on-line mode, the so-called
closed-loop control strategy. Contrary to the open-loop opti-
mal control, there are only few studies on the latter control
strategy reported in the literature (Xie et al., 2001; Zhang

and Rohani, 2003; Shi et al., 2006). In these studies, an
optimization-based strategy in conjunction with a state esti-
esign 8 8 ( 2 0 1 0 ) 1223–1233

mator is utilized to compute the optimal operating policy in a
feedback control framework where the effects of the plant-
model mismatch and process uncertainties are accounted
for by continuous state adaptation. However, neither of the
abovementioned studies experimentally verifies the viability
of real-time dynamic optimization of the batch crystallization
process under investigation.

Recently, Mesbah et al. (2008) and Landlust et al. (2008)
devised model-based feedback control systems on the basis
of a sequential dynamic optimizer and a non-linear model
predictive controller, respectively, and demonstrated their fea-
sibility for real-time applications. Sequel to our preceding
work, this study concerns the development of a simulta-
neous dynamic optimizer which is embedded in a similar
model-based feedback control system. The performance of
the control strategy is examined by several open-loop and
closed-loop implementations on a semi-industrial fed-batch
evaporative crystallizer. It is worth noting that the major
advantage of the simultaneous optimization approach over
the sequential optimization approach is its superior compu-
tational efficiency.

In what follows, Section 2 describes the seeded fed-
batch evaporative crystallization process at hand, followed
by Section 3 in which the process model for an ammo-
nium sulphate–water system is discussed. In Section 4, the
description of the feedback control structure, as well as the
formulation of the dynamic optimization problem is given.
Section 5 discusses the model validation and the experimen-
tal implementation of the proposed control strategy, followed
by the concluding remarks outlined in Section 6.

2. Process description

The fed-batch evaporative crystallization of an ammonium
sulphate–water system is performed in a 75-l draft tube crys-
tallizer. The crystallizer can be considered as a single perfectly
mixed compartment with one inlet and two outlet streams.
The fed-batch operation is exercised to compensate for losses
in the crystallizer volume due to the evaporation of solvent,
i.e. water, and the slurry sampling. The crystallizer is there-
fore continuously fed throughout the batch experiment with a
crystal-free feed stream containing saturated ammonium sul-
phate solution at 50 ◦C since the crystallization is carried out
isothermally at this temperature. The outlet flows from the
crystallizer on the other hand include the unclassified prod-
uct removal stream, as well as the vapor stream that is free
from crystal and solute. The small product flow is withdrawn
from the crystallizer at regular time intervals and diluted with
the saturated feed solution to facilitate on-line measurement
of the CSD with a laser diffraction instrument (HELOS-Vario,
Sympatec, Germany).

In order to ensure the reproducibility of batches and
achievement of the desired product specifications, seeded
batch experiments are carried out. Ground seeds are prepared
by milling and sieving of the commercial product crystals of
ammonium sulphate (DSM, The Netherlands) to collect 0.6 kg
of the 90–125 �m sieve fraction. The seed crystals are aged
for 1 h in a saturated solution of ammonium sulphate in a
seeding vessel at 50 ◦C prior to insertion into the crystallizer
(Kalbasenka et al., 2007). An in-line concentration measuring
the predetermined supersaturation level at which the ground
seeds are introduced to the vessel.
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. Crystallization model

he cornerstone of a model-based control strategy is its
ynamic process model, describing the dynamic relation
etween the relevant inputs and outputs of the system to be
ontrolled. Such control strategies utilize the model to contin-
ously explore the degrees of freedom of the process in order
o achieve the maximum performance in accordance with an
ptimization criterion.

The dynamic behavior of a crystallization process can be
igorously captured by a population balance equation, along
ith conservation equations and kinetic relations. Under the

ssumptions of perfectly mixed suspension, constant crys-
allizer volume, nucleation of crystals of infinitesimal size,
egligible breakage and agglomeration and size-independent
rowth of crystals, the population balance equation for a fed-
atch process is expressed as

∂n (t, L)
∂t

= −G
∂n (t, L)

∂L
− Fp

V
n (t, L) (1)

ith the following initial and boundary conditions

(0, L) = n0(L) (2)

(t, 0) = B0

G
. (3)

n Eq. (1) n represents the number density (# m−3 m−1), G is the
rystal growth rate (m s−1), B0 is the total rate of nucleation
# m−3 s−1), L is the characteristic length of crystals (m), V is
he crystallizer volume (m3) and Fp is the unclassified product
emoval flow rate (m3 s−1).

As is evident from Eq. (1), the population balance equation
s a hyperbolic partial differential equation whose accurate
umerical solution is often computationally too involved.
oreover, the population balance modelling approach typi-

ally leads to a highly complex model describing the evolution
f the CSD in a great detail that is not necessarily needed for
ontrol applications. The method of moments (Randolph and
arson, 1971) is therefore applied to Eq. (1) in order to recast
he population balance equation into a set of computation-
lly affordable reduced-order ordinary differential equations.
pon multiplying both sides of Eq. (1) by LidL and integrating
ver the entire crystal size domain, the following set of differ-
ntial equations that describes the evolution of moments of
he CSD in time is obtained
dmi

dt
= 0i · B0 + i · Gmi−1 − miFp

V
i = 0, . . . , 4 mi(0) = mi,0. (4)

Table 1 – Model parameters.

Symbol Parameter

C* Saturation concentration
g Growth rate exponent
Hc Specific enthalpy of crystals
HL Specific enthalpy of liquid
HV Specific enthalpy of vapor
KV Volumetric shape factor
kb Nucleation rate constant
kg Growth rate constant
Fp Product flow rate
V Crystallizer volume
�c Crystal density
�L Solution density
gn 8 8 ( 2 0 1 0 ) 1223–1233 1225

Eq. (4), which that is known as the moment model, provides
an exact solution to the population balance equation given in
Eq. (1). It however reduces the level of detail of the population
balance modelling approach since only certain properties of
the crystal population are described, rather than the entire
crystal size distribution.

Due to the dependence of the crystallization phenomena
on the evolution of supersaturation in the course of the batch
process, Eq. (4) has to be coupled with conservation laws.
Owing to the isothermal operation of the crystallizer, the mass
and energy balance equations simplify to a single expression
for the solute concentration

dC

dt
= Fp(C∗ − C)/V + 3KVGm2(k1 + C)

1 − KVm3
+ k2Q

1 − KVm3
C(0) = C0

(5)

where Q is the heat input to the crystallizer (kW), KV is the crys-
tal volumetric shape factor, C* is the saturation concentration
(kgsolute kgsolution

−1) and the constant coefficients k1 and k2 are
given by

k1 = HvC∗

Hv − HL

(
�c

�L
− 1 + �LHL − �cHc

�LHv

)
− �c

�L
and

k2 = C∗

V�L(Hv − HL)
. (6)

In addition to the first five leading moments of the CSD and the
solute concentration balance, kinetic relations should be used
to express the crystallization phenomena. Due to the lack of
detailed knowledge about the crystallization phenomena tak-
ing place in such processes and for the sake of simplicity often
required for control applications, the total nucleation rate B0

and the size-independent crystal growth rate G are modelled
by means of empirical power law expressions

B0 = kbm3G (7)

G = kg(C − C∗)g. (8)

The parameters of the empirical equations are estimated
using a set of experimental data of normal batch operation.

The physical properties of the ammonium sulphate–water
crystallizing system, as well as the nucleation and growth rate
kinetic parameters are listed in Table 1.

Value Unit

0.46 kgsolute kgsolution
−1

1 –
60.75 kJ kg−1

69.86 kJ kg−1

2.59 × 103 kJ kg−1

0.43 –
1.02 × 1014 # m−4

7.50 × 10−5 m s−1

1.73 × 10−6 m3 s−1

7.50 × 10−2 m3

1767.35 kg m−3

1248.93 kg m−3
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4. On-line dynamic optimization

Crystal growth dominant operation is often favored in batch
crystallization processes. The crystal growth rate is a key
process variable having a close relation with most of the
product quality aspects. High crystal growth rates will typ-
ically result in more impurity uptake in the crystals, more
liquid inclusions, as well as undesirable attrition and agglom-
eration. To suppress the latter phenomena that adversely
affect the product quality, the supersaturation level in the
crystallizer should be limited to the metastable region such
that low crystal growth rates are attained at all times dur-
ing the batch. This however leads to a loss in the batch
productivity due to the low supersaturation levels in the
crystallizer.

In order to be able to realize a trade-off between the fulfill-
ment of product quality requirements and the maximization
of batch throughput, the optimal control problem should be
formulated such that an upper limit on the crystal growth rate
is met throughout the batch run. The dynamic optimization
problem is therefore defined as follows:

min
Q(t)

∫ tf

0

(100(G(t) − Gmax)/Gmax)2dt

∫ tf

0

dt

s.t. Eqs. (4) − (8)

Qlow ≤ Q(t) ≤ Qhigh

(9)

where Q is the parameterized heat input profile, tf is the batch
time and Gmax is a conservatively chosen maximum crys-
tal growth rate to avoid the formation of irregularly shaped
crystals and limit the undesirable effects of high supersatu-
ration levels (Gmax = 2.5 × 10−8 m s−1). In fact Eq. (9) computes
the optimal control action, i.e. heat input to the crystallizer,
over a future time frame, the so-called control horizon. An
inequality constraint is however imposed on the heat input;
the lower limit Qlow is to ensure the survival of ground seeds
during the initial phase of the batch, while the upper actuator
constraint Qhigh is due to physical limitations of the process.
It is well evident that the optimal control problem stated in
Eq. (9) expresses the desire to sustain the product quality
by suppressing excessive growth rates. This implies that the
maximization of the batch productivity is sought as the sec-
ondary interest.

The optimization problem is solved in GAMS simulation
environment using CONOPT3 solver, which is well suited for
the solution of constrained optimization problems by means
of non-linear programming (NLP) algorithms. The optimal
control problem is converted to an NLP problem via simultane-
ous optimization approach (Huesman et al., 2007) in which all
the differential equations are transformed to algebraic equa-
tions by parameterization of the state and input trajectories.
The implicit Euler scheme is utilized for discretization of the
variables due to its unconditional numerical stability. The
input and state profiles consist of 180 elements spanned over a
prediction horizon of 3600 s, which is equivalent to the control
horizon in this case.

The feedback control system depicted in Fig. 1 is devised to
use the dynamic optimizer for real-time implementations. In

this framework, the dynamic optimization problem is continu-
ously solved on-line in a receding horizon mode (Maciejowski,
2002) such that the deviations of the process output, i.e. crystal
esign 8 8 ( 2 0 1 0 ) 1223–1233

growth rate, from the reference trajectory, i.e. Gmax, are kept
as small as possible in the presence of plant-model mismatch
and process uncertainties. Thus, an observer is utilized to esti-
mate the initial conditions xest based on the process model
and the available process measurements ymeas. The estimated
states are used to initialize the optimization problem recur-
sively at regular time intervals. The observer also enables one
to estimate the supersaturation profile, i.e. solute concentra-
tion, for which actual measurements are not obtainable. In
this study, an extended Luenberger-type observer designed on
the basis of the moment model (Kalbasenka et al., 2006) is used
to reinitialize the dynamic optimizer every 120 s, when new
information on system states becomes available through CSD
and crystal content measurements. Then every 20 s, the first
element of the optimal operating policy, i.e. heat input profile,
is taken as the set-point value and applied to the process using
a conventional PI controller which takes the control action u to
eliminate the difference between the process value of the heat
input Qpv and the set-point Qsp. The PI controller is embed-
ded in a Distributed Control System (DCS, CENTRUM CS3000,
Yokogawa, Japan) that forms the basic control layer. An OPC
(OLE (Object Linking and Embedding) for Process Control) com-
munication interface (IPCOS, The Netherlands) facilitates the
timed signal exchange among the various modules of the con-
trol architecture.

5. Results and discussion

5.1. Model validation

It follows from the model description given in Section 3 that
the dynamics of the system under investigation are governed
by a set of differential algebraic equations, i.e. Eqs. (4)–(8). It
is expected that the moment model provides an adequate
description of the process for the intended control applica-
tion. This is due to the fact that large seed loads are used in
the batch experiments which result in relatively low super-
saturation levels (Doki et al., 2002). Under these conditions,
the effect of secondary nucleation is minimized and, con-
sequently, the crystal growth mainly dictates the evolution
of the crystal size distribution throughout the batch. This
implies that the CSD is often uni-modal and, therefore, can
be well represented by the mean crystal size and the CSD
width obtained from the moment model. The use of the
moment model is also motivated by the high computational
burden required to numerically solve the population balance
equation; this may render the real-time implementation of
the proposed model-based control strategy computationally
infeasible.

In order to ensure that the moment model is an adequate
representation of the process at hand, model validation is
performed. The moments of the measured crystal size dis-
tribution and the model predictions are depicted in Fig. 2.
The measured moments are calculated from the crystal vol-
ume density distributions and the crystal volume fraction
data obtained at regular sampling time intervals during the
experiment. As can be inferred from Fig. 2, the measured and
simulated moments of the crystal size distribution are in good
agreement except for the zeroth and the first moments. A sat-
isfactory fit is also achieved for the mean crystal size defined

as the quotient of m4 to m3.

The poor fit quality obtained for the first two leading
moments of the CSD is mainly attributed to the limitations
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Fig. 1 – Block diagram of the on-line optimal control system.
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f the CSD measurement technique. The laser diffraction CSD
easurement device has a low sensitivity towards the small-

st crystals that are small in volume but large in numbers. This
mplies that the measured zeroth moment of the CSD, which

orresponds to the number of crystals present in the sample,
s to a large extent unreliable.

Fig. 2 – Validation of th
5.2. Experimental implementation of the control
strategy

The performance of the proposed model-based control

strategy is experimentally examined by several real-time
implementations on the 75-l draft tube crystallizer described

e moment model.
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t inp
Fig. 3 – Hea

in Section 2. As the product quality in seeded batch runs is
predominantly determined by the crystal growth rate, varia-
tions of the crystal growth rate in relation to different heat
input profiles are investigated in various experiments. The
settings of the seeded fed-batch evaporative crystallization
experiments are listed in Table 2.

The first three experiments, namely DTc31, DTc55 and
DTc80, aim at revealing the superiority of the on-line com-
putation of the optimal control profile over the open-loop
implementation of the off-line optimized profile. Figs. 3 and 4
depict the heat input and growth rate profiles in the seeded
batch runs, respectively. As can be seen, when the heat input
to the crystallizer is kept constant at 9 kW throughout the
experiment DTc31, the crystal growth rate steadily decays
being unable to fulfill its constraint, represented by the dash-
dotted line in Fig. 4. This implies that a control action has to
be taken in order to facilitate an effective crystal growth rate
control during the batch runs. The optimal operating policy
is, therefore, computed in an off-line setting and manually
applied to the process as a time-varying set-point of the heat
input PI controller during the experiment DTc55. Fig. 4 shows
that the growth rate is yet again unable to closely track its con-

straint due to the open-loop implementation of the optimal
heat input trajectory.

Table 2 – Description of the seeded fed-batch evaporative crysta

DTc31 DTc55

Impeller frequency, rpm 450 450
Temperature, ◦C 50 50
Pressure, mbar 100 100
Heat input, kW m−3 9.0 Manual
Seed fraction, �m 90–125 90–125
Seed mass, g 600 600
Seed preparation time, min 57 60
Relative supersaturation at seeding point 0.01627 0.00567
ut profiles.

The above discussed inability to fulfill the crystal growth
rate constraint motivates the on-line computation of the opti-
mal heat input trajectory in the experiment DTc80. As shown
in Fig. 4, when the crystal growth rate crosses the constraint
at 4000 s, it is forced to follow the maximum growth rate by
raising the heat input to the crystallizer. The constraint can-
not however be tracked any longer as soon as the heat input
reaches its upper bound of 13 kW at 8000 s and, consequently,
the growth rate gradually drops while the heat input remains
at its maximum admissible value. It is evident that the
closed-loop implementation of the dynamic optimizer offers a
better constraint tracking till actuation limitations render the
optimal control of the batch process impossible. This supe-
rior performance owes to the feedback structure, as well as
the receding horizon implementation of the control strat-
egy that accounts for the plant-model mismatch and enables
effective disturbance handling by state adaptation in the
observer.

Nonetheless, Fig. 4 reveals that the growth rate constraint
is not maintained in the initial phase of the batch since the
heat input cannot be lowered below 9 kW. This is due to the
hard constraint defined on the heat input, i.e. Eq. (9), to sup-

press possible dissolution of the inserted seeds (Kalbasenka
et al., 2007). To further investigate the effect of the latter con-

llization experiments.

DTc80 DTc81 DTc82

450 450 450
50 50 50
100 100 100
Optimizer (Qlow = 9 kW) 4.5 Optimizer (Qlow = 2 kW)
90–125 90–125 90–125
600 600 600
53 55 62
0.01103 0.00705 0.00683
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Fig. 4 – Crystal g

traint on the product quality, namely the CSD properties,

nd to attain a more effective optimal control of the crystal
rowth rate, two more seeded batch experiments are carried
ut. Figs. 5 and 6 show that in experiment DTc81, where the

Fig. 5 – Median c
th rate profiles.

seeds are introduced into the crystallizer at the heat input of

4.5 kW, the median and the width of the first measured CSD
remain to a large extent similar to the previous batch runs.
This suggests that the lower bound of the heat input can be

rystal size.
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crys
Fig. 6 – Width of the

further lessened as it is unlikely that the seeds dissolve when

they are exposed to lower heat inputs.

In experiment DTc82, the lower heat input bound is
reduced to 2 kW. The heat input and the growth rate pro-

Fig. 7 – Optimal heat input pro
tal size distribution.

files corresponding to the closed-loop implementation of the

dynamic optimizer subjected to the new constraint are shown
in Figs. 7 and 8, respectively. In this batch run, the seeds are
inserted into the crystallizer at the heat input of 4.5 kW; then

file throughout the batch.
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Fig. 8 – Optimal crystal growth

aving obtained 8 reliable CSD measurements to appropriately

nitialize the dynamic optimizer, the optimal control system
s switched on. Fig. 7 shows that a control action is immedi-
tely taken to bring the crystal growth rate to its constraint

Fig. 9 – Batch cr
profile throughout the batch.

by decreasing the heat input to 3.9 kW. Subsequently, a fairly

well growth rate constraint tracking is achieved till the heat
input reaches its maximum admissible value, i.e. 13 kW. The
effectiveness of applying the on-line optimal control strategy

ystal yield.
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to achieve the maximum crystal growth rate in the course of a
batch crystallization process can be clearly inferred from Fig. 8
that shows an uncontrolled process, namely the experiment
DTc81, leads to continuous violation of the maximum growth
rate.

Fig. 9 reveals that real-time implementation of the dynamic
optimizer substantially increases the batch productivity in
comparison with the respective reference experiment with a
constant heat input profile. This is due to the higher crystal
growth rates obtained in the seeded batch run. The spikes in
the crystal content measurements are due to the blockage of
the product line of the crystallizer that is alleviated by rinsing
the line with hot water. As shown in Fig. 9, reducing the lower
heat input constraint adversely impacts the batch productiv-
ity. This effect can be justified by the superior product quality
specifications, achieved by the tight crystal growth rate control
throughout the batch run. However, these quality aspects may
not be directly visible in the measured CSD characteristics,
i.e. the median crystal size and the width of the distribution.
It should be noted that the fulfillment of the product qual-
ity requirements in batch crystallization processes is often
of greater importance than the maximization of the process
yield.

The evolution of the median crystal size and the CSD width
during the various experiments is depicted in Figs. 5 and 6,
respectively. As can be seen, the seeded batch runs exhibit
almost similar initial behavior in terms of the CSD charac-
teristics. This is the result of the optimal seeding procedure
that circumvents irreproducible start-ups due to uncertain
initial conditions. Fig. 5 shows that the median crystal size
achieved at the end of the batch runs to which the control
strategy is applied remains almost identical to their respective
reference experiments. Lowering the heat input constraint
however results in a slight reduction in the product median
crystal size due to a lower overall crystal growth rate in the
course of the batch. In the experiments DTc81 and DTc82,
the CSD width is also somewhat broader as shown in Fig. 6.
This can be attributed to the lower supersaturation level at the
seeding point which may possibly cause partial dissolution of
the seeds.

6. Conclusions

In this paper a real-time dynamic optimization strategy for
industrial batch crystallization processes is developed and
experimentally validated on a 75-l evaporative draft tube crys-
tallizer. The model-based controller aims to maximize the
batch productivity without jeopardizing the product quality.
The quality requirement is implemented as an upper con-
straint on the crystal growth rate that should be fulfilled at
all times during the batch.

This study demonstrates that dynamic optimization is
an effective control strategy for model-based optimal oper-
ation of batch crystallizers. It is shown that the open-loop
implementation of the optimal profiles deteriorates their
effectiveness mainly due to the plant-model mismatch and
process uncertainties. Such shortcomings can to a large extent
be accounted for by on-line computation of the optimal tra-
jectories with feedback of the process states, estimated from
on-line measurements. The results show that application of

the proposed control policy allows the maximization of the
production rate, while fulfilling the product quality require-
ments. Furthermore, it is revealed that the constraints to
esign 8 8 ( 2 0 1 0 ) 1223–1233

which the optimal control problem is subjected may consider-
ably suppress the optimal operation of the process. As shown,
relaxing the input constraint leads to a far better control of
the crystal growth rate, which in turn dictates the product
quality.

In future, the current work will be extended to the optimal
control of an 1100-l draft tube baffle crystallizer equipped with
a fines removal loop that offers an extra degree of freedom to
better control the CSD.
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