
D
ow

nl
oa

de
d 

B
y:

 [U
T 

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y 

D
el

ft]
 A

t: 
20

:2
2 

27
 S

ep
te

m
be

r 2
00

7 

International Journal of Control
Vol. 80, No. 10, October 2007, 1552–1561

Closed-loop identification of multivariable processes

with part of the inputs controlled

M. LESKENS*y and P. M. J. VAN DEN HOFz

yTNO Science and Industry, De Rondom 1, 5612 AP Eindhoven, The Netherlands
zDelft Center for Systems and Control, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands

(Received 11 August 2005; in final form 27 April 2007)

In many multivariable industrial processes a subset of the available input signals is being

controlled. In this paper it is analysed in which sense the resulting partial closed-loop
identification problem is actually a full closed-loop problem, or whether one can benefit
from the presence of non-controlled inputs to simplify the identification problem. The analysis

focuses on the bias properties of the plant estimate when applying the direct method of
prediction error identification, and the possibilities to identify (parts of) the plant model
without the need of simultaneously estimating full-order noise models.

1. Introduction

In the closed-loop identification literature, the experi-

mental situation generally considered is the one depicted

in figure 1; see Van den Hof (1998), Forssell and Ljung

(1999) and Ljung (1999). However in industrial practice

one will regularly encounter the situation as sketched

in figure 2, where only subsets of the input and output

signals are used in the control loop. Open-loop inputs

might, for example, be either manipulated variables

that are not manipulated by the controller or

measurable disturbances. Open-loop outputs typically

are variables of which measurements are available

apart from the controlled variables (closed-loop

outputs) and which one also would like to use as outputs

of a model to be estimated. This latter situation

frequently occurs at modern large scale industrial

plants where the data acquisition systems typically

deliver many more measurements of process variables

than just the controlled variables.
The identification of partial closed-loop systems has

not been dealt with extensively in the literature;

although sometimes mentioned as, e.g., in Zhu (2001).

For analysing the problem one could rephrase the
partial closed-loop identification (PCLID) problem as
a ‘‘complete’’ closed-loop identification (CCLID)
problem where the controller has zero entries and
some setpoint variables can not be excited. In this way
the statistical properties of estimates can be analysed
using existing theory on closed-loop prediction error
identification.

It is well known that a closed-loop experimental
situation has a severe impact on identification methods.
When focussing on the so-called direct method (Ljung,
1999) of prediction error identification, two main
consequences of the closed-loop situation are that

(a) a consistent plant model can only be identified if also
the full noise model is estimated consistently; and

(b) the variance of the plant estimate is determined by
only the noise-free part of the (closed-loop) input
signals.

Point (a) can be rather problematic in situations

with large numbers of inputs/outputs. Estimating

a full-order plant and noise model can easily lead to

high-dimensional and complex non-convex optimization

problems that are hard to solve. As a result a separation

of the identification problem can be attractive, where

in a first step a plant model is identified and in a*Corresponding author. Email: martijn.leskens@tno.nl
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second step the noise model is estimated if required,

while both models can be validated separately. In an

open-loop experimental setup this can be achieved

by using independently parametrized plant and noise

models. However in a closed-loop setting using

the direct identification method an identification of

the plant model separately will fail due to property (a)

mentioned above.
In this paper the central question to be considered

is: in the given situation of a partial closed-loop
setting, is a separate identification of the plant model
feasible, or in other words: can advantages of an
open-loop experimental setup be used to facilitate sepa-
rate identification of (possibly a part of) the plant
model?
After specifying the appropriate setting and notation

in x 2, the general convergence analysis for direct

prediction error methods will be recalled in x 3. Next,

in x 4 and x5, the particular situation of a partial

closed-loop setting will be considered. In x 4, the most

general situation, with both open-loop inputs and

open-loop outputs being present, will be discussed.

Section 5 will discuss the situations where either no

open-loop inputs or no open-loop outputs are present.

In x 6, simulation results are discussed that illustrate

the presented theory. Section 7 will discuss some conse-

quences of this theory and consider alternative closed-

loop identification methods. The paper ends in x 8 with

conclusions summarizing the answer to the question

raised above.

2. Setup and notation

The closed-loop system configuration to be considered
is sketched in figure 3, where u1ðtÞ and y1ðtÞ reflect

the open-loop inputs and outputs, while u2ðtÞ and y2ðtÞ

are the closed-loop (controlled) inputs and outputs.

All indicated signals are considered to be multivariate.

The system equations are given by

y1ðtÞ
y2ðtÞ

� �
¼ GoðqÞ

u1ðtÞ
u2ðtÞ

� �
þHoðqÞ

e1ðtÞ
e2ðtÞ

� �
ð1Þ

u2ðtÞ ¼ KðqÞ½rðtÞ � y2ðtÞ�; ð2Þ

where rðtÞ is a set of setpoint signals and KðqÞ a feedback
controller. HoðqÞ is a monic stable and stably invertible
noise filter, and eðtÞ ¼ ½eT1 ðtÞ e

T
2 ðtÞ�

T a multivariate

white noise process with covariance matrix

E½eðtÞeTðtÞ� ¼ �0.
The transfer function matrices corresponding to the

plant and disturbance dynamics, GoðqÞ resp. HoðqÞ, are
partitioned according to

GoðqÞ ¼
G11

o ðqÞ G12
o ðqÞ

G21
o ðqÞ G22

o ðqÞ

" #
; HoðqÞ ¼

H11
o ðqÞ H12

o ðqÞ

H21
o ðqÞ H22

o ðqÞ

" #

with Gji
oðqÞ representing the part of GoðqÞ with uiðtÞ as its

inputs and yjðtÞ as its outputs.

Con-
troller Plant

Outputs

Extra
inputs /

excitation
signals

InputsSetpoints

Disturbances

Figure 1. ‘‘Complete’’ closed-loop configuration.

Con-
troller

Plant
Closed-loop outputs

Extra
inputs /

excitation
signals

Closed-
loop inputsSetpoints

Disturbances

Open-loop
inputs Open-loop outputs

Figure 2. Partial closed-loop configuration.
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It is further assumed that possible excitation signals
u1ðtÞ are uncorrelated with eðtÞ, and that setpoint signals
rðtÞ are uncorrelated to u1ðtÞ and eðtÞ.
In the direct method of prediction error identification

a one-step ahead predictor model defined by Gðq, �Þ and
Hðq, �Þ is considered, leading to a prediction error

"ðt, �Þ ¼ Hðq, �Þ�1
½ yðtÞ � Gðq, �ÞuðtÞ�

and an estimated model on the basis of N data is
obtained by

�̂N ¼ argmin
�

1

N

XN
t¼1

"Tðt, �Þ��1"ðt, �Þ,

with � a symmetric positive definite weighting matrix.
For further details and assumptions on the prediction
error setting we refer to Ljung (1999), where it is
shown that under fairly general conditions (the regularity
conditions involve uniform stability of the model set,
quasi-stationary of the input process, and a noise
process having bounded fourth moment) the parameter
estimate �̂N converges as N tends to infinity with
probability 1 to

Dc ¼ argmin
�

�E"Tðt, �Þ��1"ðt, �Þ: ð3Þ

To simplify the notation in the remainder of this paper,
the time t and shift operator q will be left out of it.
For the same reason the notations G� ¼ Gðq, �Þ,
H� ¼ Hðq, �Þ, etc. will be used

3. Convergence analysis of the direct approach

The asymptotic parameter estimate Dc (3) can be
represented as a frequency domain integral by applying
Parsseval’s relation. For the considered closed-loop
situation this results in (see Ljung (1999) for the scalar

situation and Forsell and Ljung (1999) for the

multivariable case)

Dc ¼ argmin
�

Z �

��

tr

"�
ðGo � G�Þ ðHo �H�Þ

�
��0

�
ðGo � G�Þ

�

ðHo �H�Þ
�

� �
ðH��H�

� Þ
�1

#
d!, ð4Þ

where ��0
is the spectral density of the signal

�0 :¼ ½uT eT�T, and ð�Þ
� refers to the complex conjugate

transpose.
In Corollary 5 of Forssell and Ljung (1999) the

expression for Dc is reformulated into an expression

that more directly represents the bias properties of the

plant estimate Ĝ�. By writing

��0
¼

I 0
�eu�

�1
u I

� �
�u 0
0 �r

e

� �
I ��1

u �ue

0 I

� �

with �r
e ¼ �o ��eu�

�1
u �ue, Forssell and Ljung (1999)

show that under the additional assumption that u is

persistently exciting (see Ljung (1999) for a definition),

Dc is characterized by

Dc ¼argmin
�

Z �

��

tr ½ðGo þ BG � G�Þ�uðGo þ BG � G�Þ
�

½

þ ðHo �H�Þ�
r
eðHo �H�Þ

�
�ðH��H�

� Þ
�1
�
d! ð5Þ

with

BG ¼ ðHo �H�Þ�eu�
�1
u : ð6Þ

The so called ‘‘bias-pull’’ BG characterizes the amount of
bias that is obtained for the G-estimate due to the

controller induced correlation between the white noise

terms e and inputs u. This bias-pull term might be

considered as an extra bias on top of the bias introduced

by the fact that the model structure G� might not be

flexible enough to contain Go (Go =2G). It follows from

the expression (5) that if BG ¼ 0, then G� ¼ Go is

minimizing the trace expression, provided that the

parameters that occur in H� are independent of the

parameters in G�. In that situation the plant model

will be identified without bias. Note that this situation

typically occurs in a ‘‘full’’ open-loop problem where

there is no correlation between noise signals

and inputs. Then �eu ¼ 0, and by (6) it follows

that BG ¼ 0.

u1(t)

y1(t)

y2(t) 

e1(t) e2(t)

Ho(q)

Go(q)
+ K(q)

r(t)

_ u2(t)

v1(t) v2(t)
++

++

Figure 3. Partial closed-loop system (with both open- and
closed-loop inputs and both open- and closed-loop outputs).
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4. Convergence analysis in the case of PCLID data

4.1 General case

The central question considered in this paper is whether
in a partial closed-loop setting a separate identification
of the plant model and the noise model is possible
with the direct identification approach. This question
is addressed by verifying whether any of the elements
of the bias pull BG become structurally zero; the related
entries of the G-estimate can, under some additional
conditions to be discussed, be identified asymptotically
unbiased (in case Go 2 G) irrespective of the noise
model. Hence, in order to be able to answer the central
question considered here, one simply has to analyse the
expression (6) for the particular partial closed-loop
setting. In this section, this is done for the situation of
both open-loop inputs and open-loop outputs being
present. The situations where there are either no
open-loop inputs or no open-loop outputs are discussed
in x 5.
Because of the particular closed-loop configuration

considered in the setup of figure 3 it follows that
�e1u1 ¼ 0 and �e2u1 ¼ 0. As a result �eu will be
structured as

�eu ¼
0 ?
0 ?

� �
,

where ? refers to a general (non structural-zero) element.
Substituting this into the expression (6), and taking into
account that because of the closed-loop configuration
�u will be a matrix without structural-zero elements,
there will not be an entry in BG that is structurally
equal to 0 (see equations (7) and (8)). This leads to the
following proposition.

Proposition 1: Consider the partial closed-loop identifi-
cation problem as formulated above. In this situation the
presence of an open-loop excitation signal u1 does not
imply that entries of the plant Go can be identified asymp-
totically unbiased independent of the choice of the model
structure for Ho.

In other words: closing a single loop in an industrial
process does generally turn the identification problem
into a ‘‘full’’ closed-loop problem, and no single entries
in Go can be estimated asymptotically unbiased without
fully parametrizing and identifying the noise models also.
In order to specify possible special cases the bias pull

term BG is specified in terms of its several entries.
By simply analyzing the expression (6) (for �e1u1 ¼ 0
and �e2u1 ¼ 0) it follows that

BG ¼
B11
G B12

G

B21
G B22

G

 !
ð7Þ

with

B11
G ¼ �

�
H11

o �H11
�

�
�e1u2�

�1
u2
�u2u1�

�1

�
�
H12

o �H12
�

�
�e2u2�

�1
u2
�u2u1�

�1

B12
G ¼

�
H11

o �H11
�

�
�e1u2

�
��1

u2

þ��1
u2
�u2u1�

�1�u1u2�
�1
u2

�
þ
�
H12

o �H12
�

�
�e2u2

�
��1

u2

þ��1
u2
�u2u1�

�1�u1u2�
�1
u2

�
B21
G ¼ �

�
H21

o �H21
�

�
�e1u2�

�1
u2
�u2u1�

�1

�
�
H22

o �H22
�

�
�e2u2�

�1
u2
�u2u1�

�1

B22
G ¼

�
H21

o �H21
�

�
�e1u2

�
��1

u2

þ��1
u2
�u2u1�

�1�u1u2�
�1
u2

�
þ
�
H22

o �H22
�

�
�e2u2

�
��1

u2

þ��1
u2
�u2u1�

�1�u1u2�
�1
u2

�

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð8Þ

and � ¼ �u1 � �u1u2�
�1
u2
�u2u1 . Notice that none of

the elements of BG is zero, i.e., they all remain
dependent on the bias of some part of the noise
model: one might have expected that at least some
part of BG, e.g., B

11
G would have become zero. The fact

that all elements of BG remain non-zero immediately
leads to the conclusions that, for this PCLID case,
(i) the complete noise model must be estimated without
bias in order to obtain a completely unbiased G-estimate
(in case Go 2 G) and (ii) no explicit user-defined tuning
of any part of the bias of the G-estimate is possible.
These conclusions are exactly the same as for the
CCLID case and, thus, this PCLID problem should be
treated as a CCLID problem (or one should resort to
an alternative PCLID method; see x 7).

The expressions given above for the bias-pull terms
are valid for the most general situation possible, i.e.,
without any additional structural conditions on Go

and/or Ho. In the next two subsections two different
special cases will be considered.

4.2 The case of uncorrelated disturbances v1 and v2

A particular case that leads to special results is when the
disturbances v1 acting on the open-loop outputs are
uncorrelated with those acting on the closed-loop
outputs v2. This can be represented by the requirements
that H21

o ¼ 0, H12
o ¼ 0, and �o block-diagonal.

The direct consequence then is that �e1u2 ¼ 0 and this
can further simplify the expressions for BG, as
formulated next.

Closed-loop and identification of multivariable processes 1555
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Proposition 2: Consider the partial closed-loop identifi-
cation problem as formulated before. Under the additional
conditions:

(i) v1 and v2 are uncorrelated, and
(ii) the model structure used for identification satisfies

H12
� ¼ 0

BG will satisfy

BG ¼
0 0
? ?

� �
:

As a result the plant transfers G11
o and G12

o can be identi-
fied asymptotically unbiased, irrespective of the noise
model H�, provided that

. u is persistently exciting, and

. the parameters of G11
� and G12

� are independent of the
parameters in the remaining transfers of G� and H�:

The proposition shows that when the output distur-
bances on the two different types of outputs are uncor-
related, the entries in Go related to the open-loop
output y1 can be identified in an unbiased way,
irrespective of the noise model. To this end the two
inputs u1 and u2 need to be considered jointly.
One can not retain the same properties of unbiasedness
if simply u1 and y1 are taken to identify the transfer G11

�

separately.
The restriction on the parametrizations that is

formulated in Proposition 2 implies that there will
occur problems if a multivariable parametrization for
G� is used in which coupling of parameters in several
entries of the transfer matrix occur. The entries that
will be identified asymptotically unbiased need to be
parametrized independent of the parameters in the
other transfer entries of G�. Attractive parametrizations
that allow independent parametrizations in the transfer
entries to different output signals are e.g. finite impulse
response models, models based on orthogonal basis
function expansions (Ninness et al. 1995, Van den Hof
et al. 1995), and state space models in output companion
forms (Gevers and Wertz 1984). Less attractive model
structures are general state space models, as e.g., used
in subspace identification (Van Overschee and de
Moor 1996), and multivariable polynomial models as,
e.g., ARX models (Ljung 1999).

4.3 The case of no cross-coupling: G21
o ^0

If the plant’s transfer from open-loop inputs u1 to
closed-loop outputs y2 is known to be 0, a situation
results where �u2u1 ¼ 0 and consequently �u becomes
block diagonal. The situation is rather restrictive, but
is still special enough to be considered separately.

Substituting �u2u1 ¼ 0 into the expressions for BG it
follows that

BG ¼
0 ?
0 ?

� �
:

As a result the plant transfers G11
o and G21

o can be
identified asymptotically unbiased, irrespective of the
noise model H�, under conditions that are similar as
formulated in Proposition 2. Note that the situation of
the entry G21

o now is trivial, as it is presumed to be 0!
This situation allows for a separation of the identifica-

tion problem. By only considering the measurements u1
and y1, the transfer function G11

o can be identified
unbiasedly (irrespective of H�) even when discarding
the effect of u2. Discarding the effect of u2, i.e., discard-
ing the transfer G12

o , then leads to an increase of the var-
iance of the estimate, but not to a bias.

If both the condition G21
o ¼ 0 and the set of assump-

tions from the previous subsection are satisfied, the
resulting structure for BG is

BG ¼
0 0
0 ?

� �
:

As a result unbiased estimates (irrespective of H�) can be
obtained for G11

� , G12
� and G21

� , provided that these model
entries are parametrized independent of the remaining
entry in G� and from all entries in H�. An
unbiased estimate for G22

� can (again) only be obtained
if an unbiased estimate is obtained of the noise
model H22

� .

5. The PCLID problem with only controlled

inputs or outputs

In this section the same line of analysis will be followed
to investigate and discuss, briefly, convergence of the
direct approach when applied to the PCLID situations
where either no open-loop inputs or no open-loop
outputs are present. It will become evident that similar
conclusions as stated in the previous section are valid
also for these PCLID situations.

5.1 The case of no open-loop inputs: dimðu1Þ^0

In this PCLID case the bias-pull term can be analysed
similarly as in x 4.1, leading to

BG ¼
B12
G

B22
G

 !
ð9Þ

1556 M. Leskens and P. M. J. Van den Hof
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with

B12
G ¼

�
H11

o �H11
�

�
�e1u2�

�1
u2

þ
�
H12

o �H12
�

�
�e2u2�

�1
u2

B22
G ¼

�
H21

o �H21
�

�
�e1u2�

�1
u2

þ
�
H22

o �H22
�

�
�e2u2�

�1
u2

)

ð10Þ

Note that these expressions also follow from (8) by
setting �u1u2 ¼ �u2u1 ¼ 0. Also here, as can be seen,
none of the bias-pull terms becomes independent of
the biases of the noise model estimates. Hence, also
this PCLID problem should basically be treated as
a full closed-loop identification problem meaning that
a completely unbiased H-estimate must be obtained in
order to obtain a completely unbiased G-estimate.
Under the additional assumptions of Proposition 2

(disturbances v1 and v2 uncorrelated, etc.)

BG ¼
0�

H22
o �H22

�

�
�e2u2�

�1
u2

 !
ð11Þ

As a result, an unbiased estimate of G12
o can be obtained

irrespective of H� under the usual conditions of indepen-
dent parametrization. The transfer G22

o can only be esti-
mated unbiasedly, if the noise model H22

� is estimated
without bias.

5.2 The case of no open-loop outputs: dimðy1Þ^0

If y1 is not present, the bias-pull term reduces to

BG ¼ B21
G B22

G

� �
ð12Þ

with

B21
G ¼ �

�
H22

o �H22
�

�
�e2u2�

�1
u2
�u2u1�

�1

B22
G ¼

�
H22

o �H22
�

�
�e2u2�

�1
u2

�
�
Inu2 þ�u2u1�

�1�u1u2�
�1
u2

�
9>>=
>>; ð13Þ

and � as given before. Since BG does not contain any
structural zeros, the PCLID problem basically should,
again, be treated as a full closed-loop identification
problem.
The additional (and simplifying) assumption that

B21
G ¼ 0, implying that �u2u1 ¼ 0, does not lead to any

apparent advantage as it only affects B21
G which is zero

by assumption in this case.

6. Simulation example

In order to illustrate the theoretical results that
are discussed in this paper, an example is presented

involving simulations with a linear time-invariant pro-
cess Go with 3 inputs and 2 outputs, in a configuration
as sketched in figure 3, where all signals are scalar-
valued, except for the open-loop input u1 which is
two-dimensional. In other words, in the considered
simulations a scalar-valued feedback system is applied
to a 3 input, 2 output process.

The process models Go that are used in the
simulations (full and with G21 ¼ 0) were, in fact, derived
from a model that was identified from real-life data
obtained, in a partial closed-loop setting, from a large-
scale municipal solid waste combustion (MSWC)
plant. Similarly, the (full and diagonal) disturbance
models Ho that are used in the examples were derived
from a disturbance model that was obtained from
the same real-life MSWC plant data. Actually, this
MSWC plant PCLID problem formed the motivation
for the work presented here. The MSWC model
was estimated in a similar fashion as described in
Leskens et al. (2002), i.e., in the two stage manner of
Van den Hof and Schrama (1993) (see the discussion
in x 7) and using a high order modelling and model
reduction approach. The disturbance model was
estimated according to the two step procedure discussed
at the beginning of x 7. The specifics of the identification
of the MSWC plant will not be discussed in this paper as
it is outside its scope.

In all identification experiments to be discussed the
closed-loop system is excited by the two open-loop
input signals and the external reference signal r, all
chosen as uncorrelated white noise processes with (the
almost asymptotic) length N¼ 120 000. This experiment
length was chosen this (very) large in order to
sufficiently minimize any accidental (variance) error in
the estimated model(s), thereby properly disclosing any
bias error.

6.1 Output error and Box Jenkins models – General case

In order to verify whether the process dynamics can
be identified without modelling the noise dynamics,
a full-order output error (OE) model is identified
(situation Go 2 G). The results of this identification are
shown in figure 4, where the step response of Go is
compared with 5 realizations of estimated output error
models. It is apparent that all entries of the identified
model show a bias (on top of a relatively small variance
error). The results are compared with 5 realizations of
estimated Box–Jenkins (BJ) models that include
a noise model (situation S 2 M), that clearly do
not exhibit bias. This illustrates the results of
Proposition 1: once single feedback is applied to a
system, output error models no longer provide asympto-
tically unbiased process models.

Closed-loop and identification of multivariable processes 1557
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6.2 Output error models – Situation of diagonal Ho

In order to illustrate the results of Proposition 2, the
noise process is chosen to be diagonal. For this situation
output error models are identified (situation Go 2 G),
where the entries of the process models are parametrized
independently. In figure 5 the step responses of five
realizations of estimated output error models are
shown and compared to the process Go. It appears, as
predicted by Proposition 2, that the entries related to
the open-loop output y1, i.e., the first row of transfers,
are unbiased, whereas the identified transfers towards
the closed-loop output y2 are biased.

6.3 Output error models – Situation of G21^0

The result of x 4.3 is illustrated by returning to the origi-
nal (full) noise dynamics Ho but by setting the cross-
coupling term in the process dynamics G21

o ¼ 0.
Figure 6 shows the results of, again, 5 estimated
output error models where the entries of the process
models are parametrized independently. In this situation
the transfers related to the open-loop inputs (u1) are

asymptotically unbiased. This appears in the first two
column entries of the models.

7. Discussion of the results and alternative methods

The results presented in the previous sections point
to limited possibilities for the direct PE identification
method to partition a partial closed-loop identification
problem into several subsequent steps. Such a partition-
ing can be very attractive in open-loop problems.
In multivariable open-loop identification problems
(cf, figure 7) it is generally possible to perform the
following subsequent steps:

. first identify a consistent plant model Ĝ, and validate
this model;

. next (if necessary) identify an accurate noise model Ĥ.

The separation of these steps is attractive from a compu-
tational point of view, but also in view of a separate
order and structure determination (validation) of the
model transfers Ĝ and Ĥ. The first step in this procedure
can even be partitioned in separate experiments, where
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Figure 4. Step responses of Go (solid), five realizations of OE estimates (dashed) and of BJ estimates (dotted) for data generating
system with full noise model Ho.
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one input signal at a time is excited, and corresponding
SIMO models are identified. If the input signals are
uncorrelated, i.e., �u is diagonal, the separation into
SIMO identification problems can even be made on
the basis of one dataset where all inputs are excited
simultaneously. In all these situations there will be no
bias in the plant estimate Ĝ. Although care has to
be taken when validating process models without the
availability of accurate noise models (see, e.g., Douma
et al. (2005)) the separation of identifying process and
noise models has several advantages.
For the partial closed-loop identification problems

as sketched and discussed in the previous sections,
it appears that all these properties are lost when using
the direct closed-loop identification method, once one
single loop around the system is closed. Identification
of an unbiased Ĝ generally requires a full identification
of the noise model Ĥ.
Only in special cases (v1 and v2 uncorrelated) a part

of Go can be estimated unbiased without any limiting
conditions on the estimated noise model. For the
remaining part of the plant model at least part of the
noise model needs to be identified simultaneously.

Separation of the multivariable experiments into
single input excitations (and SIMO model identifica-
tions) will always lead to biased models, because of the
fact that input signals will be correlated through the
presence of feedback.

As an alternative for the rather pessimistic results on
closed-loop identification with the direct prediction
error method, indirect methods (Van den Hof and De
Callafon 1996) or joint input-output methods as, e.g.,
the two-stage method (Van den Hof and Schrama
1993) or projection method (Forssell and Ljung 1999)
can be considered. In the two-stage/projection approach
the transfer function from reference input to closed-loop
input is estimated first, and this (unbiased) model
estimate is used to construct a filtered closed-loop
input in which the noise-dependent part of the signal is
removed. In the second stage the plant model is then
estimated on the basis of the reconstructed input signal
and the measured output. When applying the two-stage
method to the PCLID problem, the first stage consists of
estimating the transfer from both r and u1 to u2 and
subsequently constructing the noise free part û2 of the
latter signal(s). In the second stage, the plant and
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Figure 5. Step responses of Go (solid) and five realizations of OE estimates (dashed) for data generating system with block
diagonal noise model Ho.
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(if necessary) noise model can then be obtained
unbiasedly and in separate steps via estimating the
transfer from û :¼ ½uT1 ûT2 �

T to the outputs y. Note that
it is important to also include u1 in the first step, in
order to avoid that its effect is being considered as an
unmeasured disturbance, leading to increased variance
of the estimated model.
Although the direct prediction error method is

attractive from a statistical efficiency point of view,
alternative indirect (or joint i/o) methods can have
particular advantages as indicated here.

The current paper focusses only on bias-properties of
estimated models. Variance properties will have to be
complemented, and will contribute to providing answers
to the question how to design the cheapest multivariable
experiments (in terms of plant excitation and experiment
time) in order to guarantee identified models within
a prespecified bound of uncertainty, as addressed, e.g.,
for SISO processes in Bombois et al. (2006).

8. Conclusions

In this paper, it has been shown that for the direct
method of (closed-loop) prediction error identification
in general any partial closed-loop identification
(PCLID) problem has basically the same characteristics
as a full closed-loop identification problem and should
therefore be treated as such.

This implies that also for PCLID problems all transfer
functions of the noise model must be estimated without
bias for all transfer functions of the G-estimate to
be unbiased. Only in the special case that the output
disturbances on open-loop and closed-loop outputs are
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Figure 6. Step responses of Go (solid) and five realizations of OE estimates (dashed) for data generating system with full noise
model and G21 ¼ 0.
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Figure 7. Multivariable open-loop configuration.
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uncorrelated, parts of the plant model can be identified
unbiased without identifying a noise model.
The implication of these results is that the option to

partition the (large scale) identification problem into
subsequent steps (first identifying Go and subsequently
Ho) is not feasible for this approach, nor is it possible
to partition the MIMO identification problem into
independent SIMO problems.
It has been illustrated that these latter problems

can be overcome by other methods of closed-loop
identification as, e.g., the two-stage method. Especially
in multivariable problems with only a limited number
of loops closed, it can be very attractive to remove the
noise influence on the closed-loop inputs in a first step,
and reformulate the identification as an open-loop
problem, retaining all favorable properties of open-loop
identification methods.
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