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Abstract: In Atomic Force Microscopy (AFM), the force between the measurement tip and
the sample is controlled in a feedback loop to prevent damage to the tip and sample during
imaging, and to convert the measurement of the tip-sample force into an estimation of the sample
topography. Dynamical uncertainties of the system pose a strong limitation on the achievable
control bandwidth, and on the accuracy of the estimated topography. This contribution discusses
an integrated approach to design a robust feedback controller and topography estimator, taking
into account the dynamical uncertainties of the imaging system. It is shown that for a given
AFM system there exist a direct trade-off between the closed-loop bandwidth and the guaranteed
bounds on the topography estimation error due to the dynamic uncertainties in the system.
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1. INTRODUCTION

Atomic Force Microscopy (AFM) [Binnig et al. (1986)]
is an important tool in micro-, and nano-technology to
provide images of sample topography with molecular or
even atomic resolution [Sarid (1994)]. In AFM, the sample
topography is measured by probing the sample with a very
sharp tip, while scanning the sample or tip in a raster
scan-pattern. The measurement tip is mounted on the free
end of a micro-cantilever which allows to measure the
interaction force between the tip and the sample during
imaging. The tip-sample interaction force is controlled in
a feedback loop, manipulating the distance between the
tip and sample. The purpose of this vertical feedback loop
is twofold: to prevent damage of the tip and the sample
during imaging, and to provide an estimate of the sample
topography. In order to provide the scanning motion and
to allow the control of the tip-sample force, a positioning
stage is used which can position the tip relative to the
sample in all three spatial directions.
Although AFM is capable of providing high resolution to-
pography images in a wide range of applications and envi-
ronmental conditions, one of its main limitations is its low
imaging speed [Hansma et al. (2006)]. In order to improve
the imaging speed of AFM, a vast amount of research has
been done on improving both the mechanical design of the
AFM-system [Ando et al. (2001); Schitter et al. (2007)], as
well as improved control of the scanning motion [Devasia
et al. (2007); Butterworth et al. (2009)], and improved
control of the tip-sample interaction force [Schitter et al.
(2001); Salapaka et al. (2005)]. Nowadays, prototype high
speed AFM-systems have been reported, allowing scan-

rates of more than 1000 lines per second [Ando et al.
(2001); Picco et al. (2007); Schitter et al. (2007)]. The main
limitation on the imaging speed, however, is considered
the closed-loop bandwidth of the vertical feedback loop
[Hansma et al. (2006)]. Recently, dual actuated control
schemes are proposed, allowing a significant increase of
the closed-loop bandwidth of the vertical feedback loop
without sacrificing effective positioning range, by using
a combination of a long-range, low-bandwidth actuator
and a short-range, high-bandwidth actuator [Sulchek et al.
(1999)].
Although a lot of research has gone into increasing the
bandwidth of both the scanning-stage as well as the verti-
cal feedback-loop, the consequences of the higher control
bandwidths on the accuracy of the topography measure-
ment has not been investigated in much detail. In [Schitter
et al. (2001)] improved topography estimation is discussed
by taking into account a model of the dynamical behavior
of the system. In [Salapaka et al. (2005)] it is shown how
the estimator model can be incorporated in the feedback
controller design. The dynamical behavior of the system,
however, may show some variations when changing the tip
or sample, which poses strong limitations on the achievable
control bandwidth and the accuracy of the topography es-
timation. In this contribution an integrated design method
for the feedback controller and topography estimator is
discussed, taking into account the dynamical uncertainties
of the system.
In Section 2 the topography estimation problem is ex-
plained and how the accuracy of the topography estima-
tion depends on the dynamical uncertainty of the system.
An integrated approach to design a feedback controller
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and topography estimator is presented in Section 3, taking
into account the dynamical uncertainties of the system.
Application of this design approach to a prototype dual
actuated AFM is discussed and analyzed in Section 4, and
conclusions are drawn in Section 5.

2. TOPOGRAPHY ESTIMATION PROBLEM

Figure 1 shows a block diagram of the vertical feedback
loop in AFM, with G the actuator dynamics, P the sensor
dynamics , and K the feedback controller. While scanning,
the sample topography enters the feedback loop as an
unknown disturbance signal denoted h(t) in Figure 1,
which in the Laplace domain is given as:

H(s) =
1

1 + L(s)
· H(s)

︸ ︷︷ ︸

E(s)

+
L(s)

1 + L(s)
· H(s)

︸ ︷︷ ︸

−X(s)

, (1)

with L(s) = P (s) ·K(s) ·G(s) the loop gain of the control
loop. H(s), X(s) and E(s) are the Laplace transforms of
the topography signal h(t), the actuator displacement x(t),
and the control error e(t) respectively.
The objective of the vertical feedback loop is twofold: pre-
vent damage and wear of the measurement tip and sample
by minimizing the control error e(t) = x(t) + h(t), and

minimize the topography estimation error ǫ(t) = ĥ(t) −
h(t).
In high accuracy metrological AFM-systems, the sample
topography is measured by directly measuring the actu-
ator displacement x(t) with high accuracy displacement
sensors (e.g. interferometric). When assuming that the
vertical feedback loop is fast enough to track the sample
topography variations while scanning (i.e. e(t) ≈ 0), the
measurement of the actuator displacement can be regarded
as a direct measure of the sample topography. The as-
sumption of zero control error, however, only holds when
scanning relatively slowly, allowing the feedback control
loop sufficient time to recover from topography variations.
At higher imaging speeds part of the topography informa-
tion will enter the control error-signal e(t), which should
therefore also be taken into account when providing an
estimate of the sample topography. As the loop-gain L(s)
typically contains an integral control action to achieve
zero steady state error, the actuator displacement x(t)
generally contains low-frequency topography information,
while the control error signal e(t) contains high-frequency
topography information (cf. Eqn. (1)). Therefore, most
often both the measured control error and the actuator
displacement are presented in separate images for each
experiment.
For AFM-systems used for qualitative imaging applica-
tions the precision of the topography estimation is most
important in order to achieve the (sub-)nanometer imaging
resolution. However, as opposed to metrological AFM, the
required accuracy for AFM systems used for qualitative
imaging is not such high and the use of high accuracy dis-
placement sensors to measure the actuator displacement is
therefore not very cost-efficient. Moreover, the sensor noise
of the position sensors might degrade the measurement
precision, which becomes more severe at higher imaging
bandwidths as with high-speed AFM. In most commer-
cially available AFM-systems the sample topography is
estimated based on the measured control error signal d(t)
and the control signal u(t) (cf. Fig. 1), which in Laplace
domain becomes:

Ĥ(s) = P̂−1(s) · D(s)
︸ ︷︷ ︸

Ê(s)

− Ĝ · U(s)
︸ ︷︷ ︸

X̂(s)

, (2)

with P̂ (s) a model of the sensor dynamics P (s), and Ĝ(s) a
model of the actuator dynamics G(s). Combining (1) and
(2), the topography estimation error can be calculated as:

ε(s) =
[
Ê(s) − E(s)

]
−

[
X̂(s) − X(s)

]

=
[
P̂ (s)−1 · D(s) − E(s)

]
−

[
Ĝ(s) · U(s) − X(s)

]

=

[
P (s)P̂−1(s) − 1

]
− P (s)K(s)

[
Ĝ(s) − G(s)

]

1 + L(s)
· H(s), (3)

i.e. topography estimation error is partly stemming from
the modeling error of the sensor dynamics
[P (s)·P̂−1(s)−1], and partly stemming from the modeling

error of the actuator dynamics [Ĝ(s) − G(s)]. Important
is also to note the influence of the loop gain L(s) and
the feedback controller K(s) in (3), determining the prop-
agation of the modeling errors towards the topography
estimation error.
In dynamic mode AFM, the cantilever dynamics in P are
non-linear, making it difficult to identify and capture in
a model. Therefore, in dynamic mode AFM one strongly
relies on the actuator displacement x(t) as a measure for
the sample topography, presuming a good linearization
effect of the feedback loop. Recently, however, estimator
based techniques are developed which can provide a direct
estimate of the control error in dynamic mode AFM [Jeong
et al. (2006)]. In contact-mode AFM, the cantilever dy-
namics can be regarded fairly linear [Schitter et al. (2001)].
The sensor dynamics P can therefore be regarded as a
static gain, which can be identified before each imaging
experiment by measuring a force curve [Sarid (1994)].
In conventional AFM-systems, the actuator dynamics
G(s) are approximated by a static gain, of which the value
is obtained by calibration. In high-speed AFM-systems,
however, the bandwidth of the feedback loop is pushed
close to the resonance frequencies of the actuators, such
that also the actuator dynamics must be taken into ac-
count in the model Ĝ(s) [Schitter et al. (2001)]. A difficulty
hereby is that the dynamical behavior of the actuator
might show some variations when changing the measure-
ment probe and sample mass [van Hulzen et al. (2009)].
Although it is possible to identify the actuator dynamics
before each imaging experiment, this is not desirable as
the identification experiments are time-consuming, require
special expertise, and might also cause damage to the tip
and or the sample. Therefore, in this contribution a robust
design of the feedback controller and the topography es-
timator is considered, taking into account the dynamical
uncertainties of the system in order to guarantee certain
performance specifications with all potentiality used sam-
ples and measurement probes.

3. ROBUST DESIGN OF FEEDBACK CONTROLLER
AND TOPOGRAPHY ESTIMATOR

The primary goal of the feedback controller K(s) is to
control the tip-sample force while imaging. However, from
(3) it can be seen that feedback controller K(s) also has a
strong influence on the propagation of the modeling errors
towards the topography estimation error. For the design
of the feedback controller it is therefore important not
only to consider the disturbance rejection problem, but
also the topography estimation problem. In this section,
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Figure 1. Block diagram of the vertical feedback loop in
AFM. With actuator dynamics G, sensor dynamics P,
and feedback controller K. The topography estimator
provides an estimate of the topography signal h(t)
based on sensor signal d(t) and control signal u(t).

an integrated approach is presented to design the feedback
controller and topography estimator, taking into account
the dynamical variations of the system when using dif-
ferent measurement probe and samples. For simplicity, in
the following only contact-mode imaging is considered in
which the sensor dynamics P are assumed to be linear and
fully know. However, most of the considerations also hold
for dynamic mode AFM. Also the influence of potential
system or measurement noise is not considered. Hence,
only the modeling error of the actuator dynamics are
considered as a potential source of topography estimation
errors. The integrated design approach consists of three
steps, which are discussed in the following subsections.

3.1 Step 1: Identification and modeling of the actuator
dynamics

The dynamics of the vertical actuator in AFM can be
identified by driving the actuator with an identification
signal and measuring the cantilever deflection, while dis-
abling the lateral scanning motion. In order to identify
the dynamical behavior of the system under all working
conditions, the measurement can be repeated with differ-
ent samples weights and measurement probes, which all
together should give a good and complete resemblance
of how the system might be used in practise. Based on
the identification data of the various measurement trails,
a nominal model and dynamical uncertainty set can be
fitted capturing the dynamical behavior of the system
with all possible combinations of measurement probes and
samples:

G = {Gnom(s) · (1 + ∆(s)Q(s)) , ||∆(s)||∞ ≤ 1} , (4)

with Gnom(s) a parametric model of the nominal actu-
ator dynamics, and weighting filter Q(s) and uncertain
parameter ∆(s) capturing the dynamical variations of the
system. To minimize the conservatism of the model, the
nominal model can be obtained by first determining the
optimal un-parameterized response of the nominal model
at each frequency point which minimizes the worst-case
model error:

Γ(ωf ) = arg min
Γ(ωf )

max
k=1...n

∣
∣Φk(ωf ) − Γ(ωf )

∣
∣ , (5)

with Φk(ωf ) the vectors containing the frequency response
data from the various measurement trails. Based on the op-
timal un-parameterized nominal response Γ(ωf ), a param-
eterized nominal model Gnom(ω) can be obtained by data

fitting techniques [Pintelon and Schoukens (2001)]. Given
the parameterized nominal model and the identification
data from the various measurement trails, the worst-case
multiplicative modeling error can be determined at each
frequency point:

Ψ(ωf ) = max
k=1...n

∣
∣
∣
∣

Φk(ωf ) − Gnom(ωf )

Gnom(ωf )

∣
∣
∣
∣
. (6)

The maximum multiplicative modeling error Ψ(ωf ) can
be incorporated in the set (4), via a parameterized over-
bounding function Q(ωf ) ≥ Ψ(ωf ). Although in this
research a multiplicative modeling error description is
used, other modeling error descriptions might be used as
well (e.g. additive). In choosing a type of modeling error
description it should be taken into account how tightly
this modeling error description can be over-bounded by
the finite order over-bounding function Q(ω) [Douma and
Van den Hof (2005)]. A too loose over-bounding function
might lead to additional conservatism in the model set.

3.2 Step 2: Model-based feedback controller design

Based on the model (4), a feedback controller can be
designed which guarantees certain H∞-norm bounded
performance specifications, using the mixed-sensitivity
framework and µ-synthesis [Skogestad and Postlethwaite
(2005)]. Note that based on the model of (4), the optimal
topography estimator would equal the parametric nominal
model Gnom(s), as this model is in the center of the set,
and therefore minimizes the worst-case topography esti-
mation error based on that set. With this assumption, and
assuming that the cantilever dynamics P are fully known
and linear, i.e. P · P̂−1 = 1, the topography estimation
error of (3) becomes:

ε(s) =
K(s) · [Gnom(s) − Gnom(s)(1 + Q(s)∆(s))]

1 + L(s, ∆)
· H(s)

=
K(s) · [Gnom(s) · Q(s) · ∆(s)]

1 + L(s, ∆)
· H(s), (7)

i.e. the topography estimation error is directly stemming
from the excitation of the uncertain dynamics of the sys-
tem. The feedback controller design problem can therefore
be casted in the mixed-sensitivity framework as depicted
in Figure 2, with weighting filters Wes(s), We(s), and
Wu(s), which penalize the topography estimation error
ǫ(t), the control error e(t), and the controller output u(t),
respectively. The objective of the controller synthesis is
formulated as finding the controller parameters θ̄, which
minimize the worst case H∞-norm of the system:

γ ≥ min
θ

max
∆

∥
∥
∥
∥
∥

We(s) · S(s, θ, ∆)
Wu(s) · K(s, θ) · S(s, θ, ∆)

Wes · ∆ · Q(s) · Gn(s) · K(s, θ) · S(s, θ, ∆)

∥
∥
∥
∥
∥
∞

, (8)

which can be solved using the DK -iteration method. The
desired behavior of the closed-loop system resulting from
the controller synthesis can be enforced via the weighting
filters. If after synthesis a value γ ≤ 1 is achieved, it
can be said that for all possible plants in the set (4) the
performance criterions governed by the weighting filters
are met, and the robust stability is guaranteed [Skogestad
and Postlethwaite (2005)].

3.3 Step 3: Estimator design

The task of the estimator model Ĝ(s) is to estimate the ac-
tuator displacement x(t) based on the measured feedback
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Figure 2. System description for design of the robust feed-
back control and topography estimator, with input
h(t), and performance channel-outputs z1(t), z2(t)
and z3(t)

controller output u(t), in order to construct an estimation
of the sample topography (cf. Fig. 1). The estimator model
should be designed in such a way that the worst-case
estimation error over all possible system variations is mini-
mized. The estimator dynamics therefore ideally follow the
behavior of the un-parameterized nominal model Γ(ωf)
(cf. Eqn. (5)), which is at the center of set of measured
frequency responses. However, to allow implementation of
the estimator a parameterized model is required which can
be fitted based on Γ(ωf ), using for instance least squares
data fitting methods [Pintelon and Schoukens (2001)].
The design of the estimator model can also be directly
incorporate in the design of the feedback controller, as
discussed for nominal controller and estimator design in
[Salapaka et al. (2005)]. However, as opposed to the feed-
back controller, the estimator is not required to run in real-
time allowing higher computational complexity. The order
of the estimator model can therefore be chosen higher as
the model used for the controller synthesis, which may in
turn improve the modeling accuracy. Moreover, while the
dynamical model used for the controller synthesis requires
high accuracy particulary in the frequency region of the
0 dB crossing of the loop gain, the required accuracy for
the estimator model rather depends on the closed-loop
feedback controller output. Once the feedback controller
is designed, its output can be directly taken into account
in the design of the topography estimator as a weighting
in the data fitting:

Ĝ(ω, θ) = arg min
Ĝ(ω,θ)

N∑

ωf =ω1

[[
Ĝ(ω, θ) − Γ(ωf )

]
· K(ωf )

1 + K(ωf ) · Γ(ωf )
· V (ωf )

]2

,(9)

with weighting filter V (ωf ) capturing the expected fre-
quency spectrum of the topography signal. Minimiza-
tion of (9) can be done via the Sanathanan-and-Koerner
method [Pintelon and Schoukens (2001)].

4. DESIGN EXAMPLE AND ANALYSIS

In order to motivate the need for integrated design of
the feedback controller and topography estimator, the
procedure of Section 3 is demonstrated and analyzed in
this section. The experimental setup used in this research
is based on a commercially available AFM-system (Mul-
timode V, Veeco, Santa Barbara USA), which utilizes a
piezoelectric tube scanner to position the sample in all
three spatial directions. This AFM-system is extended to
a dual-actuated AFM by using a small piezoelectric plate
actuator (CMAP12,Noliac, Kvistgaard, Denmark) which
allows high bandwidth vertical positioning of the measure-
ment tip. The dual-actuated setup allows a higher control
bandwidth as compared to the single actuated setup, with-
out sacrificing effective positioning range [Kuiper et al.

(2010)], and is shown schematically in Figure 3a. When
considering integrated design of the feedback controller
and topography estimator, the dual actuated system is
especially interesting as the dynamical uncertainty of both
actuators manifests differently and in different frequency
regions, and the two actuators allow additional design free-
dom to cope with that. In this section, two different design
cases are shown and compared with different emphasis on
the topography estimation error.

4.1 Design of feedback controller and topography estimator
for dual actuated AFM-system

In order to identify the dynamical behavior of the system
and its variations, the system is prepared several times
with different measurement probes and sample discs, and
the actuator responses are measured by using a network
analyzer (4395A, Agilent, Santa Clara, USA). As this par-
ticular setup used in this research is typically used for high-
speed contact-mode imaging, only measurement probes
with high free resonance frequency cantilevers are consid-
ered, ranging from 300 kHz till 600 kHz. The weight of the
sample discs used in these measurements range from 0.5
till 1 grams. The results of two different frequency response
measurements for both actuators are shown in Figure 3b-
c. From Figure 3b-c the first longitudinal resonance for
the piezoelectric tube scanner can be recognized at 8 kHz,
and for the piezoelectric plate actuator at 150 kHz. The
various measurements, however, reveal some deviations in
the dynamical behavior, which tents to become larger with
increasing frequency. For the piezoelectric tube scanner
(cf Fig. 3b) this can be recognized for instance at 1 kHz,
which is the first lateral resonance mode of the tube, and
after 10 kHz where the dynamical behavior is shown to
be become very unpredictable. For the piezoelectric plate
actuator, the dynamical behavior starts to show clear de-
viations after 50 kHz (cf Fig. 3c). Using the identification
method described in Section 3.1, two 7th order dynamical
models are fitted based on the frequency response data
from the various measurement trails, which capture the
nominal dynamical behavior of the system, and are shown
in the dashed-dotted lines of Figure 3. Based on the nomi-
nal models the maximum multiplicative modeling error (cf.
Eqn. (6)) is determined, and the over-bounding functions
Q(s) are fitted, shown in the green and black-dashed lines
of Figure 3b-c respectively.
Although not explicitly addressed during the identification
experiments, both actuators are known to exhibit some
hysteretic behavior which can cause a gain variation of
about 5%. The hysteresis induced gain variation, how-
ever, is rather small as compared to the modeling error
stemming from the uncertain dynamical modes at higher
frequencies (cf. Fig. 3). Therefore, as for both actuators
the over-bounding filters Q(s) are slightly conservative and
have magnitudes above -26dB for all frequencies (i.e. cor-
responding to 5% deviation), the gain variation stemming
from hysteresis is considered to be sufficiently captured in
the uncertainty model as well.
The obtained system model is used for the design of the
feedback controller using the method discussed in Section
3.2. To enforce the desired disturbance rejection charac-
teristics of the closed-loop system, weighting filter We(s)
(cf. Fig. 2) is shaped as an inverse high-pass filter. Critical
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in the design of a feedback controller for a dual-actuated
system is the frequency separation between both actua-
tors, requiring the long-range actuator to primarily track
the low-frequency topography variations, and the short-
range actuator to take over at higher frequencies [Schroeck
and Messner (1999)]. In order to obtain this frequency
separation between both actuators, weighting filter Wu(s)
(cf. Fig. 2) is used to enforce a low-pass behavior on the
control action for the long-range actuator, and a bandpass
behavior on the control action for the short-range actuator
[Kuiper et al. (2010)]. The emphasis which is given on the
quality of the topography estimation during the controller
synthesis can be tuned via the weight Wes(s). In order
to analyze the consequences of taking the topography
estimation problem directly into account when designing
the feedback controller, two different feedback controllers
and corresponding topography estimator are synthesized,
using different static weights on the topography estimation
error: Wes(s) = 1, and Wes(s) = 4. Given these weights
on the topography estimation error, the weights on the
control error We(s) and the controller outputs Wu(s) are
tuned up to the point that the synthesis objective γ ≤ 1
(cf. Eqn. (8)) is just met. In both design cases two 30th
order estimator models are fitted, based on the method
discussed in Section 3.3, capturing the dynamics of both
actuators for topography estimation.

4.2 Performance Analysis

The synthesis results for both design cases are shown in
Figures 4, 5, and 6. Figure 4 shows the resulting nominal
sensitivity function E(s)/H(s) for both design cases, and
Figure 5 shows the nominal complementary sensitivity
function X(s)/H(s) for both cases. Figures 4, and 5 show
that both the disturbance rejection bandwidth, as well
as the tracking bandwidth is significantly lower in the
case of Wes(s) = 4. The dashed lines in Figure 5 show
the control actions of both actuators, showing that also
the frequency at which the short-range actuator takes
over from the long-range actuator is lower in the case
Wes(s) = 4. Figure 6, on the other hand, shows the
worst-case topography estimation error determined at each
frequency point, by substituting the designed feedback
controller K(s), and estimator model Ĝ(s), and the data
of the various frequency response measurements in (3):

ǫmax(ωf ) = max
n ∈ [1 . . . j]
m ∈ [1 . . . k]

∣
∣
∣
∣
∣
∣
∣

[
Klr(ωf )

Ksr(ωf )

]T [
Φlr,n(ωf ) − Ĝlr(ωf )

Φsr,m(ωf ) − Ĝsr(ωf )

]

1 +

[
Klr(ωf )

Ksr(ωf )

]T [
Φlr,n(ωf )

Φsr,m(ωf )

]

∣
∣
∣
∣
∣
∣
∣

,

with subscripts lr and sr denoting the long-range and
short-range actuators, and j and k the amount of fre-
quency responses measurements for the long-range and
short-range actuator respectively. Figure 4 shows that with
the lower bandwidth in the case Wes(s) = 4, also the
worst-case topography estimation error is much lower as
compared to the design case with Wes(s) = 1. This is
explained by the fact that with a lower control bandwidth,
also the excitation of the uncertain dynamics is lower,
which improves the accuracy of the topography estimation.
These results demonstrate that due to the uncertain ac-
tuator dynamics, a design trade-off can be made between
the disturbance rejection bandwidth (i.e. the speed of the
instrument), and the guaranteed bounds on the topogra-
phy estimation error (i.e. the accuracy of the instrument).

To determine which one of the design cases might be
better, the intended imaging applications of the instru-
ment has to be considered. When imaging for instance
fragile biological samples, minimizing the force variations
between the tip and the sample may be most important
in order not to damage the sample, and therefore the
requirements on the accuracy of the topography estimation
might be relaxed, aiming for an as high as possible control
bandwidth. However, in other application like for instance
in the semiconductor industry, higher emphasis might be
given on the quality of the topography estimation, as the
samples used in the semiconductor industry are most often
much more firm, and higher importance may be given to
the metrological aspects of the instrument.
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Figure 4. Bode magnitude plot of the nominal sensitivity
function E(s)/H(s), based on the feedback controllers
designed with Wes = 1 (solid), and Wes = 4 (dashed).
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Figure 5. Bode magnitude plot of the nominal complemen-
tary sensitivity transfer of the system, based on the
feedback controllers designed with Wes = 1 (a), and
Wes = 4 (b). The dashed and the dashed-dotted lines
show the contribution of the short-range, long-range
actuator, respectively.

5. CONCLUSIONS

This contribution presents an integrated approach to de-
sign a robust feedback controller and topography estima-
tor for the vertical feedback loop of a given AFM-setup,
taking into account the dynamical uncertainties of the
system. The proposed design approach is demonstrated
on a prototype dual-actuated AFM-system, showing two
different designs with different emphasis on the accuracy
of the topography estimation. It is shown that due to the
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Figure 3. Schematic description of the dual actuated AFM (a), and frequency response of the tube scanner (b) and of
the plate actuator (c), for two different measurement realizations (blue, and red), the 7th order model capturing
the nominal dynamics (black, dashed-dotted), the maximum multiplicative model error (green), and the error
over-bounding filter (black, dashed).
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Figure 6. Worst-case topography estimation error deter-
mined at each frequency point for the closed-system
designed with Wes = 1 (solid), and Wes = 4 (dashed).

presents of uncertain dynamical modes in the system, a
trade off can be made between control bandwidth of the
vertical feedback loop, and the accuracy of the topography
estimation. These results suggest that when designing ac-
tuators for high-speed AFM, the actuator should not only
be optimized for fast dynamics, but also the dynamical
behavior should be consistent for the varying imaging
conditions, to allow high-bandwidth control and accurate
estimation of the sample profile at the same time.
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