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Abstract— Physical dynamic networks most commonly con-
sist of interconnections of physical components that can be
described by diffusive couplings. Diffusive couplings imply
symmetric cause-effect relationships in the interconnections
and therefore diffusively coupled networks can be represented
by undirected graphs. This paper shows how local dynamics
of (undirected) diffusively coupled networks can be identified
on the bases of local signals only. Sensors and actuators are
allocated to guarantee consistent identification. An algorithm
is developed for identifying the local dynamics.

I. INTRODUCTION

Physical networks can describe a diversity of physical
processes from various domains, such as electrical, me-
chanical, hydraulic, thermal, and chemical processes. Their
dynamic behavior is typically described by undirected dy-
namic interconnections between node signals, where the
interconnections represent diffusive couplings [1], [2]. The
network is typically described by a vector differential equa-
tion of maximum second order. Some famous examples of
physical networks are electrical resistor-inductor-capacitor
circuits and mechanical mass-spring-damper systems.

In literature, there are several methods available for iden-
tifying the physical components in the network on the basis
of measured signals. Black-box prediction error identification
methods [3] can model the transfer functions from measured
excitation signals to node signals. These models need to be
converted to the structure of the physical network for esti-
mating the component values, which is nontrivial. Moreover,
this modeling procedure depends on the particular location
of the external signals. Second, black-box state-space models
can be estimated from which the model parameters can
be derived by applying matrix transformations [4]–[6] or
eigenvalue decompositions [7], [8]. However, these meth-
ods typically do not have any guarantees on the statistical
accuracy of the estimates. State-space models of first-order
diffusively coupled networks are considered in [9]. Third,
physical networks can be considered to be directed dynamic
networks with specific structural properties [10]. Dynamic
networks can be modeled as directed interconnections of
transfer function modules [11], [12] for which an identifi-
cation framework has been developed in [12]. However, the
network structure in the model is generally lost. Information
on the global network structure of undirected graphs can be
provided by spectral network identification [13].
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Instead of identifying the full network dynamics, one can
also aim for identifying only a part of the network, such that
more simple experiments can be used to obtain a particular
component. This is often referred to as ’local’, ’single
module’, or ’subnetwork’ identification, for which several
methods have been developed for dynamic networks [14]–
[16]. Again, the structural properties of undirected network
models cannot easily be accounted for in these identification
procedures for directed dynamic networks.

This paper builds further on the preliminary work pre-
sented in [17], in which the identification of the full dif-
fusively coupled network dynamics is discussed, including
detailed identifiability and consistency results as well as
the implementation into a convex multi-step algorithm. This
paper addresses the problem of identifying a particular (local)
dynamics in the diffusively coupled network. The order
of the dynamics is not restricted and possibly correlated
disturbances can be present. The question that is addressed
is: Which nodes to measure (sense) and which nodes to
excite (actuate) in order to identify the dynamics of a local
interconnection in the network? An identification procedure
is developed that is shown to lead to consistent estimates
thereof.

The networks that will be considered in this paper are
defined in Section II. The identification problem is specified
in Section III. Section IV and Section V describe how
to remove unmeasured nodes from the network, without
affecting the target component. Section VI describes the
identification procedure, including experiment design and
conditions for consistent estimates. Section VII discusses
some algorithmic aspects. Section VIII shows a simulation
example of local identification. Finally, Section IX concludes
the paper. For simplicity, we restrict to representations in the
discrete-time domain.

We consider the following notation throughout the paper.
A polynomial matrix A(q−1) consists of matrices Aℓ and
(j, k)th polynomial elements ajk(q

−1) such that A(q−1) =∑na

ℓ=0 Aℓq
−ℓ and ajk(q

−1) =
∑na

ℓ=0 ajk,ℓq
−ℓ. Hence, the

(j, k)th element of the matrix Aℓ is denoted by ajk,ℓ. Further,
let AJ•(q

−1) indicate all jth rows of A(q−1) for which
j ∈ J .

II. DIFFUSIVELY COUPLED NETWORKS

Diffusively coupled networks are linear dynamic networks
in which the interaction between the nodes depends on the
difference between the node signals. Such an interaction
implies a symmetric coupling between the nodes. The nodes
can also be a coupled with the zero node, referred to as the
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ground node. The networks that will be considered in this
paper are defined in accordance with [17] as follows.

Definition 1 (Network model): The network that will be
considered consists of L node signals w(t), K known
excitation signals r(t), and L unknown disturbance signals
v(t) and is defined as

A(q−1)w(t) = B(q−1)r(t) + v(t), (1)

with q−1 the delay operator, i.e. q−1w(t) = w(t − 1); with
v(t) modeled as filtered white noise, i.e. v(t) = F (q)e(t)
with e(t) a vector-valued wide-sense stationary white noise
process, i.e. E[e(t)eT (t− τ)] = 0 for τ ̸= 0; and with

• A(q−1) =
∑na

k=0 Akq
−k ∈ RL×L[q−1], with A−1(q−1)

stable; rank(A0) = L; and ajk(q
−1)=akj(q

−1) ∀k, j.
• B(q−1) ∈ RL×K [q−1].
• F (q) ∈ RL×L(q), monic, stable, and stably invertible.
• Λ ≻ 0 the covariance matrix of the noise e(t). □
The diffusive character of the model is represented by the

symmetry property of A(q−1). It is assumed that the network
is connected, which means that there is a path between every
pair of nodes1.. If the network has at least one connection
to the ground node, then the network is well-posed, which
means that A−1(q−1) exists and is proper. Stability of the
network is induced by stability of A−1(q−1).

Both A(q−1) and B(q−1) are nonmonic polynomial ma-
trices. In the symmetric A(q−1), the polynomial aij(q

−1)
characterizes the dynamics in the link between node signals
wi(t) and wj(t). Often, B(q−1) is chosen to be a submatrix
of the identity matrix, implying that each external excitation
signal directly enters the network at a distinct node. If F (q)
is polynomial or even stronger if F (q) = I , the network
(1) leads to an ARMAX-like or ARX-like2 model structure,
respectively.

A diffusively coupled network induces an undirected
graph, where the vertices (nodes) represent the node signals
and the links (interconnections) represent the symmetric cou-
plings. Fig. 1 shows a diffusively coupled network with the
dynamics captured by the boxes containing the polynomials
aij(q

−1) and bij(q
−1) and with the nodes represented by the

circles, which sum the diffusive couplings and the external
signals.

III. IDENTIFICATION PROBLEM

In view of the symmetric couplings in the considered
networks, the local identification problem is formulated as
follows.

Definition 2 (Local identification problem): The local
identification problem concerns the identification of a single
coupling between two nodes in the network on the bases of
selected measured signals w(t) and r(t). □

A single coupling in the network contains the full informa-
tion on how two nodes interact with each other. For the nodes

1The network is connected if its Laplacian matrix (i.e. the degree matrix
minus the adjacency matrix) has a positive second smallest eigenvalue [18]

2The structure is formally only an ARMAX (autoregressive-moving
average with exogenous variables) or ARX (autoregressive with exogenous
variables) structure if the A(q−1) polynomial is monic [19].
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Fig. 1. Diffusively coupled network as defined in Definition 1, with
nodes wj , excitations rj , disturbances vj , network dynamics ajk , and input
dynamics bjk .

wi and wj , this coupling is described by the polynomials
aii(q

−1), aij(q
−1) = aji(q

−1), and ajj(q
−1). One could

interpret this identification problem as the identification of
the subnetwork described by the nodes wi and wj . For
solving this identification problem, it is assumed to be known
which nodes are the neighbor nodes of the subnetwork.

IV. IMMERSION

The identification of a subnetwork is preferably based
on partial measurement of the network. This means that
only a selected set of node signals is measured. One way
to deal with unmeasured node signals is by eliminating
them from the representation. In literature, this Gaussian
elimination is referred to as Kron reduction [2] or immersion
[20]. In this section, this reduction procedure is adapted to
polynomial representations in order to preserve the network
model structure.

For the purpose of immersion, consider a network as
defined in Definition 1, with the node signals partitioned
into two groups: the signals that will be immersed wZ(t)
and the signals that will be preserved wY(t). Define the sets
Z := {ℓ | wℓ ∈ wZ} and Y := {ℓ | wℓ ̸∈ wZ}. The external
signal v(t) is partitioned accordingly, as well as the network
matrices A(q−1) and B(q−1). This partitioning leads to the
equivalent network description[

AYY(q
−1) AYZ(q

−1)
AZY(q

−1) AZZ(q
−1)

] [
wY(t)
wZ(t)

]
=[

BY•(q
−1)

BZ•(q
−1)

]
r(t) +

[
vY(t)
vZ(t)

]
. (2)

Proposition 1 (Immersion in diffusively coupled networks):
Consider the network in (2). Removing the nodes wZ(t)
through a Gaussian elimination procedure results in the
immersed network representation

Ă(q−1)w̆(t) = B̆(q−1)r(t) + v̆(t), (3)

with w̆(t) = wY(t), Ă(q−1) symmetric, and (omitting
arguments q−1, t)

Ă(q−1) = dZZAYY − dZZAYZA
−1
ZZAZY , (4a)

B̆(q−1) = dZZBY• − dZZAYZA
−1
ZZBZ•, (4b)

v̆(t) = dZZvY − dZZAYZA
−1
ZZvZ , (4c)
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dZZ(q
−1) :=

det(AZZ)

gcd (det(AZZ), adj(AZZ))
, (4d)

where det(AZZ) and adj(AZZ) are the determinant and the
adjugate of the polynomial matrix AZZ(q

−1), respectively,
and gcd(x, Y ) is the greatest common divisor of scalar x
and all scalar elements of matrix Y .

Proof: This follows from Gaussian elimination of
wZ(t) and the fact that Ă(q−1) is a symmetric polynomial
matrix. As A−1

ZZ is rational, an additional scaling with the
monic scalar polynomial dZZ(q

−1) is needed in order to
make the representation polynomial again. □

The immersed network represents the dynamical relations
between a selected subset of nodes in the network. It plays a
crucial role in the identification of local network properties
that is based on a selected set of (local) node measurements.

V. INVARIANT LOCAL DYNAMICS

As mentioned in Section III, the objective is to identify a
subnetwork described by the nodes wi and wj . Let this sub-
network be described by node signals wJ (t) and dynamics
AJJ (q−1), where we define the set J := {ℓ | wℓ ∈ wJ }.
From (4a), it follows that the dynamics of AYY(q

−1) is
preserved after immersion, up to the scalar polynomial factor
dZZ(q

−1), if the signals wY(t) are preserved such that
AYZ(q

−1) = 0. This can simply be done by preserving the
nodes wJ (t) and all their neighbor nodes and immersing all
remaining nodes.

In line with this reasoning, we partition the node sig-
nals into three groups: the signals of interest wJ (t), their
neighbor signals wD(t), and the remaining signals wZ(t).
Define the set D := {ℓ | wℓ ∈ wD}. The external signal v(t)
is partitioned accordingly, as well as the network matrices
A(q−1), B(q−1), and F (q). We assume that the disturbance
signals vJ (t) are uncorrelated to the other disturbances in
the network (vD(t) and vZ(t)). This partitioning leads to the
network descriptionAJJ (q−1) AJD(q

−1) 0
ADJ (q−1) ADD(q

−1) ADZ(q
−1)

0 AZD(q
−1) AZZ(q

−1)

wJ (t)
wD(t)
wZ(t)

 =

BJ•(q
−1)

BD•(q
−1)

BZ•(q
−1)

 r(t) +

vJ (t)
vD(t)
vZ(t)

 , (5)

where AJZ(q
−1) = 0 = A⊤

ZJ (q−1), as the node signals
wJ (t) are not directly connected to the node signals wZ(t).

Immersing the node signals wZ(t) leads to[
ĂJJ (q−1) ĂJD(q

−1)

ĂDJ (q−1) ĂDD(q
−1)

] [
wJ (t)
wD(t)

]
=[

B̆J•(q
−1)

B̆D•(q
−1)

]
r(t) +

[
F̆JJ (q) 0

0 F̆DD(q)

] [
eJ (t)
ĕD(t)

]
, (6)

that is, Ă(q−1)w̆(t) = B̆(q−1)r(t)+F̆ (q)ĕ(t), with (omitting
arguments q−1, q, t)

ĂJJ = dZZAJJ , ĂJD = dZZAJD, (7a)

ĂDJ = dZZADJ , B̆J• = dZZBJ•, (7b)
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Fig. 2. Diffusively coupled network with a target subnetwork indicated in
red, with its neighbor dynamics and nodes indicated in orange.

ĂDD = dZZADD − dZZADZA
−1
ZZAZD, (7c)

B̆D• = dZZBD• − dZZADZA
−1
ZZBZ•, (7d)

F̆JJ = dZZFJJ , (7e)

F̆DD ĕD =
(
dZZFDD − dZZADZA

−1
ZZFZD

)
eD(t)+(

dZZFDZ − dZZADZA
−1
ZZFZZ

)
eZ(t), (7f)

with F̆DD(q) a monic, stable, and stably invertible transfer
function matrix and with ĕD(t) white noise.

Proposition 2 (Invariant local dynamics): Immersion for
diffusively coupled networks, as described in Proposition 1,
applied to the network (5) resulting in (6), gives for ℓ ∈ J :

ă−1
ℓℓ (q−1)Ăℓ•(q

−1) = a−1
ℓℓ (q−1)Aℓ•(q

−1), (8a)

ă−1
ℓℓ (q−1)B̆ℓ•(q

−1) = a−1
ℓℓ (q−1)Bℓ•(q

−1), (8b)

ă−1
ℓℓ (q−1)F̆ℓ•(q) = a−1

ℓℓ (q−1)Fℓ•(q). (8c)
Proof: For ℓ ∈ J (omitting arguments q−1, q)

ă−1
ℓℓ Ăℓ• = a−1

ℓℓ d−1
ZZdZZAℓ• = a−1

ℓℓ Aℓ•,

ă−1
ℓℓ B̆ℓ• = a−1

ℓℓ d−1
ZZdZZBℓ• = a−1

ℓℓ Bℓ•,

ă−1
ℓℓ F̆ℓ• = a−1

ℓℓ d−1
ZZdZZFℓ• = a−1

ℓℓ Fℓ•.

□
The result of Proposition 2 is that the local identification

problem of identifying a subnetwork really becomes a local
problem in the sense that (6) can be used to identify
AJJ (q−1) on the basis of the signals of interest wJ (t) and
their neighbor node signals wD(t) only and that all other
node signals wZ(t) can be discarded.

Fig. 2 shows a diffusively coupled network with in red
the subnetwork described by the node signals wJ (t) =[
w1(t) w2(t)

]⊤
and in orange the neighbor dynamics and

node signals wD(t) =
[
w3(t) w4(t)

]⊤
. Immersing the

remaining node signals from the network, results in the
immersed network representation shown in Fig. 3, where ăij
and b̆11 are related to aik and b11 according to the relations
in (7).

Remark 1 (Module representation): The result of Propo-
sition 2 is a specific version of the condition on parallel
paths and loops around the output as defined in [20]. To see
this, observe that all loops around wj(t) contain a measured
node signal if and only if all neighbor nodes of wj(t) are
measured and consequently, all parallel paths from wi(t) to
wj(t) contain a measured node signal as well [10]. □
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Fig. 3. Immersed network representation corresponding to the diffusively
coupled network in Fig. 2, with the target subnetwork indicated in red.

VI. IDENTIFICATION PROCEDURE

A. Identifying the immersed network

For identifying the complete immersed network, a predic-
tor model is set up based on the parametrized model set

M̆ :=
(
Ă(q−1, η), B̆(q−1, η), F̆ (q, η), Λ̆(η), η ∈ Π

)
, (9)

where η contains all unknown coefficients that appear in the
entries of the model matrices Ă, B̆, F̆ , and Λ̆ and where Π ⊂
Rd with d ∈ N. The corresponding data generating network
is denoted by S̆ := {Ă0(q−1), B̆0(q−1), F̆ 0(q), Λ̆0}. Define
the one-step-ahead predictor of w̆(t) in line with [17] as

ˆ̆w(t|t− 1) = E{w̆(t) | w̆t−1, rt}, (10)

where w̆ℓ and rℓ refer to signal samples w̆(τ) and r(τ),
respectively, for all τ ≤ ℓ. The resulting prediction error
becomes (omitting arguments q−1, q)

ε̆(t, η) = w̆(t)− ˆ̆w(t|t− 1; η), (11)

= Ă−1
0 (η)F̆−1(η)

[
Ă(η)w̆(t)− B̆(η)r(t)

]
. (12)

The parameters of the immersed network are estimated
through the least squares identification criterion η̂N =
argminη

1
N

∑N
t=1 ε̆

⊤(t, η)Λε̆(t, η), Λ ≻ 0. Under some mild
conditions3 this criterion converges with probability 1 to
η∗ := argminη limN→∞

∑N
t=1 E

{
ε̆⊤(t, η)Λε̆(t, η)

}
.

Proposition 3 (Consistent full identification): The param-
eter estimate η̂N provides a consistent estimate of the system
S̆ if the following conditions hold.

1) The true system is in the model set: S̆ ⊂ M̆.
2) At least one excitation signal is present: K ≥ 1.
3) Φr(ω)≻ 0 for a sufficiently high number of frequen-

cies.
4) The polynomials Ă(q−1, η) and B̆(q−1, η) are left

coprime.
5) There exists a permutation matrix P such that[

Ă0(η) Ă1(η) · · · Ăna
(η) B̆0(η) B̆1(η) · · · B̆nb

(η)
]
P

=
[
D(η) R(η)

]
with D(η) square, diagonal, full rank.

6) There is at least one parameter constraint on the
parameters of Ă(q−1, ηA) and B̆(q−1, ηB) of the form
Γη̄ = γ ̸= 0, with η̄ :=

[
η⊤A η⊤B

]⊤
.

3The standard conditions for convergence of predictor error estimates
include the condition that the white noise process e(t) has bounded moments
of an order larger than 4, see [3].

Proof: A consistent estimate is obtained if the model is
uniquely recovered from the data. Condition 1 is necessary
for this. Condition 3 ensures that the transfer functions
from r(t) and ē(t) := A−1

0 e(t) to w̆(t) (i.e. Twr(q, η) and
Twē(q, η)) can uniquely be recovered from data [17]. Con-
dition 2 implies that Twr(q, η) is nonzero. From Twr(q, η),
Condition 4 ensures that Ă(q−1, η) and B̆(q−1, η) are found
up to a premultiplication with a unimodular matrix. To
satisfy Condition 5, this unimodular matrix is restricted to be
diagonal. To preserve symmetry of Ă(q−1, η), this diagonal
matrix is further restricted to have equal elements. Condition
6 fixes the remaining scaling factor. As Ă(q−1, η) is uniquely
found, Twē(q, η) gives unique F̆ (q, η) and Λ̆(η) [17]. □

For Condition 6 it is possible to choose a custom con-
straint, leading to a scaled immersed network representation.

B. Identifying the target subnetwork

Once the complete immersed network representation (6)
is identified, the target subnetwork can be estimated. The
correct scaling is obtained through a parameter constraint
on the target subnetwork. An additional identification step is
needed for this, because this dynamics is only present in the
identified immersed network with a scaled polynomial factor
that needs to be removed. The relations in (7) lead to

ÃJ•(q
−1) = αdZZ(q

−1)AJ•(q
−1), (13a)

B̃J•(q
−1) = αdZZ(q

−1)BJ•(q
−1), (13b)

with ÃJ•(q
−1) := αĂJ•(q

−1), B̃J•(q
−1) := αB̆J•(q

−1),
and unknown scaling factor α ∈ R+.

Proposition 4 (Consistent local identification): If a
nonzero polynomial element aij(q

−1) or bij(q
−1) of

AJ•(q
−1) or BJ•(q

−1), respectively, is known, a consistent
estimate of the true A0

J•(q
−1) and B0

J•(q
−1) is obtained

through (13).
Proof: From Proposition 3, the true Ã0

J•(q
−1) and

B̃0
J•(q

−1) have been estimated consistently with a custom
parameter constraint on η. Using a known aij(q

−1) or
bij(q

−1), polynomial factor αdZZ(q
−1) can be extracted

from (13). Then, (13) leads to consistent estimates of the
true A0

J•(q
−1) and B0

J•(q
−1). □

The constraint that a nonzero polynomial element aij(q−1)
or bij(q

−1) needs to be known, means that a single inter-
connection in the network is known or that an excitation
signal enters the network through known dynamics (e.g.
bij(q

−1) = 1), respectively. If only one of the parameters
of AJ•(q

−1) or BJ•(q
−1) is constraint (similar to the

constraint in Condition 6 of Proposition 3), a consistent
estimate of the target subnetwork is obtained through a
null-space fitting, see Section VII. If this constraint is not
satisfied, the target subnetwork can be identified up to a
scaling factor that remains to be unknown.

Remark 2 (MIMO identification): The difference with a
general MIMO identification lies in the nonmonicity and
symmetry of A(q−1) and in the interpretation of the model
that leads to the selection of the necessary node signals. □
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VII. ALGORITHMIC ASPECTS

For performing the identification we adopt the multi-step
algorithm for full network identification presented in [17]
for systems with a polynomial noise model, i.e. F (q) =
C(q−1) polynomial. The prime steps of this algorithm are: 1)
estimate a nonstructured high-order ARX model; 2) reduce
this model to a structured network model through a weighted
null-space fitting (WNSF); 3) improve the structured network
model through a WNSF; 4) obtain the noise model.

While in (4) the matrix expressions are forced to become
polynomial by premultiplying with the common polynomial
factor dZZ(q

−1), this causes many polynomial terms in (4)
to have common factors. As this can lead to undesired effects
in our identification algorithm because of canceling terms,
we adopt a different route for arriving at a polynomial model.
We remove dZZ(q

−1) from (4) and approximate the rational
term A−1

ZZ(q
−1) by a symmetric polynomial matrix. If the

order of this polynomial matrix is chosen sufficiently high,
A−1

ZZ(q
−1) is approximated sufficiently well. The order of

Ă(q−1) can be controlled and no terms will cancel out. In
addition, the target subnetwork appears directly in the im-
mersed network representation. Because of these advantages,
we continue with this alternative approach. Observe that if
BZ•(q

−1) = 0, then A−1
ZZ(q

−1) only appears in ĂDD(q
−1)

and ĂDD(q
−1) can be approximated by a symmetric polyno-

mial matrix instead. The identification procedure simplifies
in the sense that Condition 6 in Proposition 3 directly applies
to the target subnetwork and that the subnetwork can be
extracted from the immersed network representation, without
an additional identification step. This means that Proposition
3 guarantees a consistent estimate of the target subnetwork.

VIII. SIMULATION EXAMPLE

This simulation example serves to illustrate that indeed a
subnetwork can be identified from a single excitation signal
and by measuring the nodes of interest and their neighbor
nodes only.

A. Simulation

set-up Consider the network (1) consisting of seven scalar
nodes, with a single excitation signal directly entering the
network at node w1 and with a polynomial noise model
F (q) = C(q−1). This network is shown in Fig. 1, where
b11 = 1. The objective is to identify the coupling between
the nodes w1(t) and w2(t) indicated in red in Fig. 2.
Hence, wJ (t) =

[
w1(t) w2(t)

]⊤
and thus wD(t) =[

w3(t) w4(t)
]⊤

. The corresponding immersed network rep-
resentation is shown in Fig. 3, where b̆11 = 1. The exact
parameter values are

A0 =



80 −40 −20 0 0 0 0
−40 80 0 −10 0 0 0
−20 0 50 0 −5 0 0
0 −10 0 35 0 −5 −5
0 0 −5 0 15 0 −5
0 0 0 −5 0 25 −20
0 0 0 −5 −5 −20 30


, (14a)

TABLE I
TRUE PARAMETERS VALUES OF AJ•(q

−1, θ) AND THE MEAN AND

STANDARD DEVIATION (SD) OF THEIR ESTIMATES.

Parameter θ1 θ2 θ3 θ4 θ5 θ6
True value 80 -60 20 -40 30 0
Mean 79.4219 -59.7437 20.1294 -39.0483 29.3419 0
SD 0.6564 0.3255 0.1626 1.1800 0.7409 0

Parameter θ7 θ8 θ9 θ10 θ11 θ12
True value -20 0 0 0 0 0
Mean -19.7780 -0.0534 0 -0.1235 0.0339 0
SD 0.3821 0.1623 0 0.2261 0.1078 0

Parameter θ13 θ14 θ15 θ16 θ17 θ18
True value 80 -60 20 0 0 0
Mean 78.0318 -58.6126 19.6240 -0.0104 -0.0957 0
SD 2.1832 1.6962 0.4578 0.6798 0.4375 0

Parameter θ19 θ20 θ21
True value -10 0 0
Mean -9.6627 -0.0820 0
SD 0.3790 0.1841 0

A1 =



−60 30 0 0 0 0 0
30 −60 0 0 0 0 0
0 0 −40 0 0 0 0
0 0 0 −40 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −20 20
0 0 0 0 0 20 −20


, (14b)

A2 = diag(
[
20 20 20 20 0 0 0

]
), (14c)

B0 =



1
0
0
0
0
0
0


, C1 = 10−2



2 9 6 3 8 4 1
3 6 1 7 1 6 7
9 6 5 7 6 3 6
7 9 4 6 6 3 7
3 6 4 9 9 5 8
7 8 6 6 5 6 5
8 2 9 5 2 4 4


. (14d)

The external excitation signal r1(t) is an independent
white noise process with mean 0 and variance σ2

r = 1. All
nodes are subject to disturbances eℓ(t), which are indepen-
dent white noise processes (uncorrelated with r1(t)) with
mean 0 and variance σ2

e = 10−2. The experiments consists
of 100 Monte-Carlo simulations, where in each run new
excitation and noise signals are generated. The number of
samples generated for each data set is N = 10 000.

In the immersed network representation, ĂDD(q
−1) is

approximated by a second-order polynomial matrix. The full
immersed network is identified through the algorithm in [17],
where in Step 1, the order of the ARX model approxi-
mation is chosen to be 10. The network topology of the
immersed network is assumed to be unknown, meaning that
all connections between nodes are parametrized. However,
it is assumed to be known that Ă2(θ) is diagonal and that
Ăk(θ) = 0, ∀k ≥ 3, such that Condition 5 in Proposition 3 is
satisfied. The knowledge that the excitation signal enters the
network directly at node w1 induces that B̆ is the 4× 1 unit
vector, such that Condition 6 in Proposition 3 is satisfied.

The target subnetwork AJ•(q
−1) is extracted from the

immersed network, where the symmetric structure of A(q−1)
is incorporated in the parametrization. The target subnetwork
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Fig. 4. Boxplot of the relative parameter estimation errors of the parameters
of AJ•(q

−1, θ) (15), for parameters with a nonzero true value.

(the first two rows of (14a)-(14c)) is parametrized as

AJ•,0(θ) =

[
θ1 θ4 θ7 θ10 0 0 0
θ4 θ13 θ16 θ19 0 0 0

]
, (15a)

AJ•,1(θ) =

[
θ2 θ5 θ8 θ11 0 0 0
θ5 θ14 θ17 θ20 0 0 0

]
, (15b)

AJ•,2(θ) =

[
θ3 θ6 θ9 θ12 0 0 0
θ6 θ15 θ18 θ21 0 0 0

]
. (15c)

Table I shows the true parameter values of AJ•(q
−1, θ).

The assumption that Ă2 is diagonal implies the constraints
θ6 = θ9 = θ12 = θ18 = θ21 = 0.

B. Simulation results

The simulation results are shown in Table I and Fig. 4.
Table I shows the mean and standard deviation of the
estimated parameters of AJ•(q

−1, θ). It can be seen that
the constraints θ6 = θ9 = θ12 = θ18 = θ21 = 0 are
incorporated, as these parameters are estimated without bias
and variance. The other parameters are estimated with a bias
that is within a bound of 1 standard deviation. This bias is
less than 3.5% deviation for θ19 and within 2.5% deviation
for all other (nonzero) parameters. The bias is caused by the
limited order of the ARX approximation in Step 1 of the
algorithm. Fig. 4 shows the relative estimation errors of the
parameters of AJ•(q

−1, θ) that have a nonzero true value.
The bias is visible through the nonzero median.

To conclude, the subnetwork described by the nodes w1

and w2 has been identified by measuring only four node
signals (w1(t), w2(t), w3(t), and w4(t)) and with a single
excitation signal (r1(t)) only. The dynamics between the
target subnetwork and its neighbor nodes has been identified
as well. The variance can be reduced further by adding
external excitation signals r(t) to the experiment.

IX. CONCLUSIONS

A method and an algorithm for identifying a subnetwork in
a diffusively coupled linear network have been presented. For
this local identification problem, it is sufficient to measure

only the node signals of interest and their neighbor node
signals, while all other node signals can be discarded. Only
a single excitation signal is required. The identification is
performed by identifying the complete immersed network
representation from which the target subnetwork is identified.
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