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1. INTRODUCTION

In industrial practice, one often faces the situation
that the true system G0 is controlled using a
controller Cid which is not fully satisfactory and
which one wants to replace by a new controller.
In such a situation, the new controller Ĉ for G0

is generally designed from a model Ĝ which has
been identified using data collected on the existing
closed loop. When designing the identification
experiment leading to the model Ĝ, the control
engineer has to make a trade-off between her/his
desire of obtaining an accurate model and the
economical constraint of keeping the experimental
costs low.

The typical approach to this problem has been
to maximize the accuracy of the identified model
(possibly with a given, say, control-oriented ob-
jective in mind) for a given experiment time and
under prespecified constraints on excitation power
(see e.g. (Ljung, 1999; Lindqvist, 2001; Hilde-
brand and Gevers, 2003) and references therein).
Here, we address this tradeoff from the dual per-
spective; namely, we seek the least costly identifi-
cation experiment leading to a required model ac-
curacy, with a control-oriented objective in mind.

More precisely, assuming that the experiment
time is given, we design a closed-loop identifica-
tion experiment for which it is guaranteed that
the identified model Ĝ delivers a controller Ĉ(Ĝ)
which achieves sufficient H∞ performance with
G0. Furthermore, among all experiments achiev-
ing this performance constraint, we seek the one
whose excitation signal r(t) induces the smallest
disturbance on the normal operation of the con-
trol loop [Cid G0]. Here, the disturbance induced
by r(t) on the normal operation is measured by
Jr = αyPyr

+αuPur
where Pyr

(resp. Pur
) is the

total power of the part of the output signal y(t)
(resp. input signal u(t)) due to r(t), and αy, αu

are self-chosen scalars.

This experiment design problem is solved in the
following context. We assume that the identi-
fication experiment is performed on the exist-
ing closed loop [Cid G0] with the direct closed-
loop Prediction Error (PE) identification method
(Ljung, 1999). We also make a classical assump-
tion in experiment design i.e. that the considered
model structure is full-order. We finally assume
that the new controller Ĉ will be designed from
the identified model Ĝ(z) = G(z, θ̂N ) using a pre-
defined control design method (e.g. a H∞ control



design method with fixed weights). In this partic-
ular context, we also make use of the fact that,
along with the model Ĝ, an identification exper-
iment delivers a parametric uncertainty region D
centered on Ĝ and containing the true system
G0 at a self-chosen probability level (Bombois
et al., 2001). Therefore, the condition that Ĉ(Ĝ)
achieves sufficient H∞ performance with G0 can
be replaced by the condition that Ĉ(Ĝ) achieves
sufficient H∞ performance with all systems in D.
Note that the size of the identified D is a function
of the covariance matrix Pθ of the identified pa-
rameter vector θ̂N and, consequently, a function
of the chosen power spectrum Φr(ω) of r(t).

In this context, we solve our experiment design
problem using Linear Matrix Inequality (LMI)
optimization (Boyd et al., 1994). For this pur-
pose, we first develop an LMI constraint, linear in
P−1
θ , which ensures that the controller Ĉ designed
with the identified model Ĝ achieves sufficient
H∞ performance with all systems in the identi-
fied uncertainty region D. The H∞ performance
is measured using an usual matricial expression
involving the four closed-loop transfer functions.
Then, among all spectra Φr(ω) that correspond to
an identification experiment ensuring this robust
performance contraint, we determine the particu-
lar Φr(ω) which minimizes the cost function Jr.
To achieve this constrained minimization, we use
the finite parametrization of Φr(ω) presented in
(Lindqvist, 2001) and which has the property that
both P−1

θ and Jr are affine in the parameters of
Φr(ω).

The use of the parametric set D that directly
follows from the identification, instead of the ad-
ditive uncertainty region that embeds D is the
main contribution of the present paper relative to
(Bombois et al., 2004). Note that the uncertainty
region D is also used for an experiment design
problem in (Hildebrand and Gevers, 2003; Jansson
and Hjalmarsson, 2004). However, in those papers,
the considered constraint pertains to a measure of
the distance between Ĝ and the plants in D and
not to the H∞ performance. Another contribution
of this paper is to extend the concept of cheap
experiment design for control that has been de-
veloped for open-loop identification in (Bombois
et al., 2004), to direct closed-loop identification.
Note that indirect closed-loop identification can
be treated as a special case of open-loop identifi-
cation with an adapted expression for the uncer-
tainty region D containing G0 (see (Bombois et
al., 2001)).

2. PE IDENTIFICATION ASPECTS

We consider the identification of a linear time-
invariant single input single output system with a

model structureM = {G(z, θ), H(z, θ)}, θ ∈ Rk,
that is able to represent the true system. Thus,
the true system is given by:

y(t) =

G0(z)︷ ︸︸ ︷
G(z, θ0)u(t) +

v(t)︷ ︸︸ ︷
H(z, θ0)e(t) (1)

for some unknown parameter vector θ0 ∈ Rk,
and with e(t) a white noise of variance σ2

e . This
true system is operated in closed loop with an
initial (but not fully satisfactory) controller Cid

i.e. u(t) = Cid(z) (r(t) − y(t)) where r(t) is the
reference signal which is assumed to be zero in
normal operation and which can be used to excite
the system for a closed-loop identification. The
closed-loop system can thus be written as:

y(t) =

yr(t)︷ ︸︸ ︷
Tidr(t)+Sidv(t)

u(t) =

ur(t)︷ ︸︸ ︷
CidSidr(t)−CidSidv(t)

(2)

with Tid = (CidG0)/(1+CidG0) and Sid = 1/(1+
CidG0). The controlled output and input of the
true system is thus made up of a part due to the
signal r(t) and one due to the noise v(t).

The model Ĝ(z) = G(z, θ̂N ), Ĥ(z) = H(z, θ̂N )
of the true system is obtained from N col-
lected data y(t) and u(t) (t = 1...N) gener-
ated by a signal r(t) applied to the closed loop:
θ̂N

∆= arg minθ 1
N

∑N
t=1 ε2(t, θ) with ε(t, θ) ∆=

H(z, θ)−1 (y(t)−G(z, θ)u(t)).

In order to keep the cost of the closed-loop identifi-
cation experiment low, the power spectrum Φr(ω)
of r(t) should be designed in such a way that
the difference between y(t) and u(t) in normal
operation (i.e. with r(t) = 0) and those signals
during the identification is as small as possible.
This objective can e.g. be obtained by minimizing
the powers Pyr

and Pur
of the signals yr(t) and

ur(t) in (2) i.e. by minimizing the cost function

Jr = αy

Pyr︷ ︸︸ ︷
 1

2π

π∫
−π

Φyr (ω) dω


 + αu

Pur︷ ︸︸ ︷
 1

2π

π∫
−π

Φur (ω) dω




with αy, αu self-chosen scalars and Φyr
(ω) (resp.

Φur
(ω)) the power spectrum of yr(t) (resp. ur(t)).

The identified parameter vector θ̂N is asymptot-
ically normally distributed, θ̂N ∼ N (θ0, Pθ) and,
given the full-order model structure assumption,
the covariance matrix Pθ has the following expres-
sion (Ljung, 1999): Pθ =

σ2
e

N

(
Ē

(
ψ(t, θ0)ψ(t, θ0)T

))−1

with ψ(t, θ) = −∂ε(t,θ)
∂θ . The dependence of Pθ on

the spectrum Φr(ω) used during the identification
is evidenced by the following expression of P−1

θ



easily deduced from (2) and the general expression
of Pθ above:

P−1
θ

=


 N

σ2
e

1

2π

π∫
−π

Fr(e
jω , θ0)Fr(e

jω , θ0)
∗Φr(ω)dω




+


N 1

2π

π∫
−π

Fe(e
jω, θ0)Fe(e

jω, θ0)
∗dω




Here, Fr(z, θ0) = CidSid
ΛG(z,θ0)
H(z,θ0)

, Fe(z, θ0) =
ΛH(z,θ0)
H(z,θ0)

− H(z, θ0)Fr(z, θ0), ΛG(z, θ) =
∂G(z,θ)

∂θ

and ΛH(z, θ) =
∂H(z,θ)

∂θ .

Using the asymptotic Gaussian distribution of the
estimated parameter vector θ̂N , it is possible to
define an uncertainty region D(θ̂N , Pθ) around
the identified model and containing the unknown
true system G(z, θ0) at any self-chosen probability
level (Bombois et al., 2001):

D(θ̂N , Pθ) =
{
G(z, θ) =

ZN (z)θ
1 + ZD(z)θ

| θ ∈ U,

U = {θ|(θ − θ̂N )TP−1
θ (θ − θ̂N ) < χ}

} (3)

where χ is a real constant dependent on the
chosen probability level and ZN , ZD are row
vectors containing delays and zeros. The size of
the uncertainty region D(θ̂N , Pθ) is a function of
the covariance matrix Pθ and thus a function of
the spectrum Φr(ω) used during the identification
experiment.

We will restrict attention to spectra Φr(ω) that
can be written as (Lindqvist, 2001):

Φr(ω) = Rr(0) + 2
m∑
i=1

Rr(i)cos(iω) ≥ 0 (4)

where m is a self-chosen scalar. The parameters
Rr(i) (i = 0...m) can be interpreted as the auto-
correlation sequence of a signal that has been
generated by a white noise passing through a FIR
filter of length m + 1. An important property of
such parametrization is that Jr and P−1

θ are both
affine functions of the design variables Rr(i) (i =
0...m) as shown in the following two propositions
(Lindqvist, 2001).

Proposition 1. Assume that Φr(ω) is given by (4).
Let M̃k(θ0) be the sequence of Markov pa-
rameters of FrF

∗
r i.e. Fr(ejω, θ0)Fr(ejω, θ0)∗ =∑∞

k=−∞ M̃k(θ0)e−jkω with Fr(z, θ0) as defined in
Section 2. Then, P−1

θ ∈ Rk×kcan be written as:

P−1
θ = M̄(θ0) +

m∑
i=0

Mi(θ0, σ
2
e) Rr(i)

where M̄(θ0) = N 1
2π

∫ π

−π
Fe(ejω, θ0)Fe(ejω, θ0)∗dω

and Mi(θ0, σ
2
e) ∈ Rk×k (i = 0...m) are defined

as M0(θ0, σ
2
e) =

N
σ2

e
M̃0(θ0) and Mi(θ0, σ

2
e) =

N
σ2

e
(M̃i(θ0) + M̃T

i (θ0)) (i = 1...m).

Proposition 2. Consider the cost function Jr and
assume that Φr(ω) is given by (4). Then, Jr can
also be written as:

Jr = (αyc0(θ0) + αud0(θ0))Rr(0) + ...

2

m∑
i=1

(αyci(θ0) + αudi(θ0))Rr(i),

where the coefficients ci(θ0) and di(θ0) are the
Markov parameters of TidT

∗
id and CidC

∗
idSidS

∗
id

i.e. Tid(ejω)Tid(ejω)∗ =
∑∞

k=−∞ ck(θ0)e−jkω and
CidC

∗
idSidS

∗
id =

∑∞
k=−∞ dk(θ0)e−jkω.

3. CONTROL DESIGN OBJECTIVES AND
CONTROL DESIGN METHOD

As stated before, our aim is to replace the “un-
satisfactory” controller Cid by a “satisfactory”
controller Ĉ(z). In order to define what we mean
by satisfactory controller, we adopt the following
performance measure for a loop [C G]:

J(G,C,Wl,Wr) = sup
ω

J̄(ω,G,C,Wl,Wr) (5)

J̄(ω,G,C,Wl,Wr) = σ̄(Wl(e
jω)F (G(ejω), C(ejω))Wr(e

jω))

F (G,C)
∆
=


 GC

1 +GC

G

1 +GC
C

1 +GC

1

1 +GC




where σ̄(A) denotes the largest singular value of
A and Wl(z), Wr(z) are given diagonal perfor-
mance filters. The performance measure (5) is
quite general: J(G,C,Wl,Wr) ≤ 1 ensures that
the four entries of Wl(z)F (G,C)Wr(z) have an
H∞ norm smaller than one. Simpler H∞ cri-
teria can be chosen as special cases; e.g., for
Wl(z) = diag(0,W (z)) and Wr = diag(0, 1),
J(G,C,Wl,Wr) ≤ 1 corresponds to ‖W/(1 +
CG)‖∞ ≤ 1.
The performance filters Wl(z) and Wr(z) are
chosen here in such a way that they reflect the
performance specifications we want to achieve
with the true system. Thus, a controller Ĉ will
be deemed satisfactory if [Ĉ G0] is stable and if
J(G0, Ĉ,Wl,Wr) ≤ 1.
The new controller Ĉ that will replace Cid will be
designed using an identified model Ĝ = G(z, θ̂N )
of G0. In order to define the control design method
leading to Ĉ = C(G(z, θ̂N )), we make the follow-
ing assumption (Bombois et al., 2004).

Assumption 1. We have pre-selected a fixed con-
trol design method which maps any reason-
able model G(z, θ) of G(z, θ0) to one controller



C(G(z, θ)). The controller C(G(z, θ)) stabilizes
G(z, θ) and achieves with this model a perfor-
mance level

J(G(z, θ), C(G(z, θ)),Wl(z),Wr(z)) ≤ γ < 1, (6)

where γ is a fixed scalar, strictly smaller than 1.

One design strategy that satisfies Assumption 1
is to choose C(G(z, θ)) as the central controller
of the four-block H∞ control design method with
performance objective (6).

If Assumptions 1 holds, then the controller Ĉ =
C(G(z, θ̂N )) designed from an identified model
Ĝ = G(z, θ̂N ) will achieve J(Ĝ, Ĉ,Wl,Wr) ≤
γ < 1. When this controller Ĉ is applied to
the true system G0, the achieved performance
could be poorer than the designed performance.
By choosing the design criterion (6) with γ <
1, we ensure, however, that there is a whole
set of systems G(z, θ) around the to-be-identified
G(z, θ̂N ), that are also stabilized by Ĉ and that
achieve J(G, Ĉ,Wl,Wr) ≤ 1.

4. IDENTIFICATION FOR CONTROL AT
THE CHEAPEST COST

As stated in the previous sections, our objective is
to design an identification experiment on the loop
[Cid G0] in such a way that the model Ĝ, identified
through this experiment, delivers a controller Ĉ
which stabilizes the unknown G0 and achieves
J(G0, Ĉ,Wl,Wr) ≤ 1. Since G0 lies in the uncer-
tainty region D(θ̂N , Pθ) identified along with Ĝ,
this performance constraint can be replaced by the
constraint 1 that Ĉ achieves J(G, Ĉ,Wl,Wr) ≤ 1
with all G(z) ∈ D(θ̂N , Pθ). Furthermore, among
all closed-loop identification experiments satisfy-
ing this performance constraint, we seek the one
where [Cid G0] is excited with the signal r(t) of
spectrum Φr(ω) which minimizes the cost func-
tion Jr. Using the parametrization (4) for Φr(ω),
our experiment design problem can thus be for-
mulated as:

Cheapest experiment design problem for
control: For a direct closed-loop identification on
[Cid G0] with N data, determine the parameters
Rr(i) (i = 0...m) of the spectrum Φr(ω) which
minimize Jr, under the constraint that Φr(ω) ≥ 0
∀ω and that J(G, Ĉ,Wl,Wr) ≤ 1 with all G(z) in
D(θ̂N , Pθ). Ĉ is the controller designed with the
identified model Ĝ using the control design method
of Assumption 1 and D(θ̂N , Pθ) is the identified
uncertainty region (see (3)).

1 If J(G, Ĉ,Wl,Wr) ≤ 1 with all G(z) ∈ D(θ̂N , Pθ),
then, under mild assumptions, Ĉ(z) = C(G(z, θ̂N )) also
stabilizes all G ∈ D(θ̂N , Pθ).

We show in the sequel that this problem can be
expressed as an LMI-based optimization prob-
lem (Boyd et al., 1994). For this purpose, we
first express the robust performance constraint
J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ) at one
particular frequency ω as an LMI, linear in P−1

θ .
Note that J(G,C,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ)
⇐⇒ at each ω, J̄(ω,C,G,Wl,Wr) ≤ 1 ∀G ∈
D(θ̂N , Pθ).

Proposition 3. Consider Ĉ = C(G(z, θ̂N )), the
controller designed from the model G(z, θ̂N ) using
the method of Assumption 1. Consider also the
set D(θ̂N , Pθ) defined in (3). Then, Ĉ achieves
J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 with all G in D(θ̂N , Pθ) if
and only if ∃ τ(ω) > 0 and a vector l(ω) ∈ Rk×1

such that

τ(ω)E(ω, θ̂N )− P(θ̂N )− L(ω) ≤ 0 (7)

with P(θ̂N ) =
(
Ik

−θ̂TN

)
P−1
θ

(
Ik

−θ̂TN

)T

+

(
0 0
0 −χ

)

E(ω, θ̂N ) = Ω
∗(ejω)

(
I4 0
0 −1

)
Ω(ejω)

Ω =

( (
I2 ⊗

(
Wr

(
Ĉ
1

)))
Wl 0

0 1

)(
ZN 0
ZD 1

ZD + ĈZN 1

)

L(ω) =
(

0 j l(ω)

−j l(ω)T 0

)
and j

∆
=

√−1

The symbol ⊗ denotes the Kronecker product.

Proof. In (Bombois et al., 2001), it is shown that,
for a system G ∈ D(θ̂N , Pθ), J̄(ω,G, Ĉ,Wl,Wr) ≤
1 can be written as:

G∗(ejω)

(
x∗xI2 0
0 −1

)
G(ejω) ≤ 0

with x =Wr(ejω)
(
Ĉ(ejω) 1

)T
and

G(z) =
(
Wl 0
0 1

)(
ZNθ

1 + ZDθ

1 + (ZD + ĈZN )θ

)
.

If we define θ̄ = (θT 1)T , the expression above
can be rewritten as θ̄TE(ω, θ̂N )θ̄ ≤ 0. On the
other hand, for any κ(ω) > 0 and any L(ω)
as defined above, θ̄Tκ(ω)L(ω)θ̄ = 0. Thus, the
constraint θ ∈ U (see (3)) can be rewritten as
θ̄T (κ(ω)(P(θ̂N )+L(ω)))θ̄ ≤ 0. Based on these two
quadratic constraints in θ̄, it is obvious that the
condition stated in the proposition with τ(ω) ∆=
1/κ(ω) implies that J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈
D(θ̂N , Pθ). The converse implication is also valid,
but the proof is quite technical.



Based on Propositions 1, 2 and 3, the experi-
ment design problem described above would be
solvable if the parametrizations of P−1

θ and Jr

w.r.t. the designs variables Rr(i) were not func-
tions of θ0 and σ2

e , and if condition (7) was not
a function of the to-be-identified θ̂N . Such diffi-
culty is classically circumvented by using a-priori
estimates for those quantities: θo,est, σ2

e,est and
θ̂N,est. The problem can then be solved using
the following LMI optimization problem where we
use the shorthand notations: ci = c(θo,est), di =
d(θo,est), M̄ = M̄(θo,est), Mi = Mi(θo,est, σ2

e,est)
and E(ω) = E(ω, θ̂N,est). Note that we often
choose θo,est = θ̂N,est.

Theorem 1. Consider the approximations θ0 ≈
θo,est, θ̂N ≈ θ̂N,est and σ2

e ≈ σ2
e,est and the short-

hand notations above. Then, the auto-correlation
sequence Rr(i) (i = 0...m) which solves the cheap-
est experiment design problem for control is the
solution of the following LMI optimization prob-
lem:

min
Rr(i)(i=0...m)

(αyc0 + αud0)Rr(0) + 2

m∑
i=1

(αyci + αudi)Rr(i)

under the constraint that ∃ a symmetric matrix
Q of appropriate dimension, a frequency function
τ(ω) valued in R and a frequency function l(ω)
valued in Rk×1 such that

τ(ω)E(e
jω

) −
(

Ik

−θ̂N,est

)(
M̄ +

M∑
i=0

Mi Rr(i)

)(
Ik

−θ̂N,est

)T

−
(

0 0
0 −χ

)
− L(ω) ≤ 0 ∀ω

and that

(
Q−ATQA CT −ATQB
C −BTQA D +DT −BTQB

)
≥ 0

with L(ω) as in Proposition 3 and

A =

(
0 0

Im−1 0

)
B =

(
1 0 ... 0

)
C =

(
Rr(1) Rr(2) ... Rr(m)

)
D =

Rr(0)

2

The optimal spectrum Φr(ω) can thereafter be
computed using (4).

Proof. According to (Lindqvist, 2001), Φr(ω) ≥ 0
∀ω is equivalent to the fact that there exists a
symmetric matrix Q such that the last constraint
above holds. Consequently, the theorem is a direct
consequence of Propositions 1, 2 and 3.
Comment 1. Condition (8) has to be consid-
ered at every frequency. This is impossible in
practice. The optimal Φr(ω) can nevertheless be
approximated by using a finite frequency grid.
An exact, but more cumbersome solution consists

of using the Kalman-Yacubovitch-Popov (KYP)
lemma (Popov, 1973): see Appendix A.

Comment 2. Our experiment design problem
delivers, for a given length N of the identification,
the spectrum Φr(ω) for the identification in such a
way that the part of the input-output signal due
to Φr(ω) has the smallest possible total power.
This optimization can be achieved for different
values of the length N of the identification in
order to choose the “optimal” combination for
the length of the identification and the induced
disturbance. In order to understand the trade-
off that can be achieved, let us perform the
following analysis. Roughly speaking, the optimal
Φr(ω) of Theorem 1 is the “smallest” Φr(ω) which
makes P−1

G > Radm where PG is the part of Pθ

corresponding to the parameters in G(z, θ) and
Radm is a fixed matrix depending on the desired
robust performance level. Consider, for simplicity,
the case where H(θ) = 1 (i.e. M=OE). Then, we
obtain:

P−1
G = N

(
I(Fr,Φr(ω)) + I(Fr, σ2

e)
)

with I(V (z),Φ(ω)) = 1

2πσ2
e

∞∫
−∞

V (ejω)V ∗(ejω)Φ(ω)dω.

Consequently, we can conclude that, for increasing
values of N , the spectrum Φr(ω) required to
make P−1

G > Radm becomes, at each ω, smaller.
Moreover, for N larger than a given value, the
spectrum Φr(ω) needed to make P−1

G > Radm is
= 0. This happens when N I(Fr, σ

2
e) > Radm.

Consequently, the identification experiment for
robust control can be achieved using a set of
normal operation signals 2 (see (2) with r(t) = 0).
The minimal value of N for this purpose can be
easily determined using a similar LMI problem as
the one in Theorem 1 (Bombois et al., 2005).

Finally, let us compare the open-loop and closed-
loop identification cases for M = OE. Using
the definition of Fr in Section 2 and Φur

(ω) =
|CidSid|2Φr(ω), the closed-loop P−1

G can be rewrit-
ten as P−1

G = N
(I(ΛG,Φur

(ω)) + I(Fr, σ
2
e)

)
while, in open-loop identification, we have P−1

G,ol =
N I(ΛG,Φu(ω)). Thus, for a fixed N , the spec-
trum Φur

(ω) required to make P−1
G > Radm is

smaller than the spectrum Φu(ω) that we need to
apply to G0 in open loop to make P−1

G,ol > Radm.
This is due to the extra term N I(Fr, σ

2
e) in

closed-loop identification. This result can be easily
extended to BJ model structures.
Comment 3. Theorem 1 uses a-priori estimates
of θ0, θ̂N and σ2

e to determine the spectrum Φr(ω)

2 This result also holds for other types of M. Note
nevertheless that a direct closed-loop identification with
Φr(ω) = 0 can then only be considered when the controller
Cid is sufficiently complex (Bombois et al., 2005).



for the identification. We can refine the obtained
spectrum using the methodology presented in
(Jansson and Hjalmarsson, 2004) and (Bombois et
al., 2004) which uses a finite set of initial estimates
instead of just one.

5. CONCLUSIONS

This paper presents new results about cheap ex-
periment design for control. These new results
have been successfully applied to the example
developed in (Bombois et al., 2004). Further re-
search will focus on the study of the sensitivity
of the methodology with respect to the choice of
the initial estimates for θ0, θ̂N and σ2

e and on
identification in low complexity model structures.
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Appendix A.

Theorem 1 shows that the robust performance
constraint J(G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ)
can be treated by an infinite set of LMI’s (i.e.

the LMI condition (7) at each ω). In this ap-
pendix, we show in Proposition 4 that we can
replace this infinite set of LMI’s by a single
LMI by removing the frequency dependence of
condition (7) using the KYP lemma. Before ap-
plying the KYP to this condition, note that
condition (7) is not the unique way to express
J̄(ω,G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ) as an
LMI linear in P−1

θ : in (Bombois et al., 2001),
we developed another LMI condition. That LMI
condition involves the real part of a frequency-
dependent matrix. Note also that, in (Jansson
and Hjalmarsson, 2004), the authors apply the
Real Positive (RP) lemma (a special case of the
KYP lemma) to a LMI condition of the type in
(Bombois et al., 2001). For this purpose, they need
to multiply the LMI by the least common denom-
inator of its entries. Such an approach is correct,
but can lead to a final frequency-independent LMI
which has an unnecessarily large order. Conse-
quently, we have here developed the frequency-
dependent condition (7) in such a way that
the corresponding frequency-independent LMI ob-
tained via the KYP lemma has the lowest possible
order. This frequency-independent LMI is given
in the following proposition whose proof can be
found in (Bombois et al., 2005).

Proposition 4. Consider Proposition 3 and a self-
chosen scalar b. Define B(z) = (1, z−1, ..., z−b)T .
Then, condition (7) holds for all ω (or equivalently
J(G, Ĉ,Wl,Wr) ≤ 1 ∀G ∈ D(θ̂N , Pθ)) if

∃ Pf = PT
f and Pλ = PT

λ

∃ lq ∈ R(b+1)×1 q = 1...k

∃ scalars λi i = 0...b

such that(
A

T
f PfAf − Pf A

T
f PfBf

B
T
f PfAf B

T
f PfBf

)
+

(
C

T
f

D
T
f

)
Xf

(
Cf Df

)
≤ 0

(
Pλ − A

T
λQλAλ C

T
λ − A

T
λPλBλ

Cλ − B
T
λ PλAλ Dλ +D

T
λ − B

T
λ PλBλ

)
≥ 0

Here (Aλ, Bλ, Cλ,Dλ) is as (A,B,C,D) in Theo-
rem 1 but withM and Rr(i) replaced by b and λi,
respectively. (Af , Bf , Cf ,Df ) is the state-space
representation of F(z):

F(z) =

(
(I5 ⊗ B)Ω(z)
Ik+1 ⊗ B
Ik+1

)
and

Xf =




(
I4 0
0 −1

)
⊗ Λ 0 0

0 0

(
0 L1

−L2 0

)T

0

(
0 L1

−L2 0

)
−P(θ̂N )




Λ =

(
λ0 λ1 ... λb
λ1 0 ... 0
... 0 ... 0
λb 0 ... 0

)
, L1 =

(
l
T
1
...

l
T
k

)
, L2 =

(
l
T
1 ... l

T
k

)
.


