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Abstract

Given an expansion of a dynamical system in terms of a ge
eralized orthonormal (Hambo) basis, the problem of reali
ing a state-space model of minimal McMillan degree suc
that its firstN expansion coefficients match the given one
is addressed and solved. For the solution use is made
the properties of the Hambo operator transform theory. T
resulting realization algorithms can be applied in an exa
and approximative sense and can also be applied to solv
related interpolation problem.

1 Introduction

The idea of decomposing a system in terms of basis fun
tions is widely applied in system theory and related pro
lems such as system approximation and identification.
is for instance common to represent a stable discrete-ti
systemG(z) in the form of its Laurent expansion as

G(z) =
∞

∑
k=1

gkz
�k; (1)

where the functionsfz�kg form an orthonormal basis for the
space of strictly-proper, stable transfer functions, denoted
H2. The associated expansion coefficientsgk, also known as
the Markov parameters, play an important role in system
theory, realization theory, system approximation and ide
tification. In this context systems are often represented
terms of a finite set of Markov parameters, which is know
as FIR (finite impulse response) modeling.

Generalized orthonormal basis constructions have been p
posed that offer the flexibility to tune them so as to perfor
better than FIR models in particular situations. These a
expansions of the general form

G(z) =
∞

∑
k=1

ck fk(z); (2)

where the functionsfk(z) represent general orthonormal ba
sis functions whileck 2 R are the corresponding expansion
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coefficients. Examples of such expansions are the well
known Laguerre and two-parameter Kautz basis construc
tions [10, 8, 18, 19]. Further generalizations were propose
in [4, 6, 11]. Their general form is given by

fk(z) =

p
1�jξkj2

z�ξk

k�1

∏
i=1

1�ξ�i z
z�ξi

(3)

wherefξig is a collection of poles to be chosen by the
user. The origin of these constructions lies in the work of
Takenaka and Malmquist in the 1920s [20]. The functions
constitute a complete orthonormal set inH2 provided that
∑∞

k=1 (1�jξkj) = ∞. Typically the rate of convergence of
the series expansion (2) is higher when the pre-chosen pole
ξi are closer to the poles of the underlying system. This pa
per considers the basis construction that was proposed
[6], also denoted as the Hambo basis, which in terms of (3
is equivalent to a finite pole selectionfξig, i = 1; ::;nb which
is repeated periodically, i.e.ξk+nb = ξk;8k.

The problem considered is as follows: given a partial ex-
pansionfc̃kgk=1;���N, find a minimal state-space realization
(A;B;C;D) of a systemG(z) of smallest order such that
G(z) = ∑∞

k=1ck fk(z) andck = c̃k, k= 1; � � �N. This is a gen-
eralization of the classical minimal partial realization prob-
lem that was solved in [7, 16]. This problem has been ad
dressed for the Laguerre case and the Hambo basis case w
full information (N ! ∞) in [12, 13, 15]. In order to deal
with finite N a different approach has to be followed. It will
be shown that a solution for this case can be constructed b
exploiting the Hambo transform theory (see [17, 5, 1]).
The presented results will be limited to scalar transfer func
tions. The generalization to multivariable systems present
no great difficulties. Throughout this paper it will be as-
sumed that all state-space realizations and expansion coe
ficients are real-valued.
The outline of the paper is as follows. First some prelimi-
naries about the Hambo basis and Hambo transform theor
are recalled in section 2. In section 3 the Hankel operato
framework is presented in which the realization problem is
solved for the case where one has knowledge of the full ex
pansion and for the case where the McMillan degree of the
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system is known. In section 4 this approach is combin
with results from Hambo basis theory to derive the main r
sults. In section 5 application of the results in the context
system identification is discussed and illustrated.
For the proofs of all results see [2, 3]. We will use the fo
lowing notational conventions:

Lp�m
2 Hilbert space of complex matrix functions of dimen

sionp�mthat are square integrable on the unit circl
The superscript is suppressed ifp= m= 1.

H p�m
2 Subspace ofLp�m

2 of functions analytic outside the
unit disc, and zero at infinity.

RH2 Subspace ofrational transfer functions ofH2.

hX;YiM Matrix “inner” product betweenX 2 Lp�1
2 andY 2

Lm�1
2 defined ashX;YiM =

1
2π

Z π

�π
X(eiω)Y(eiω)�dω.

For p= m= 1 the subscriptM will be suppressed.

H?

2 The orthogonal complement ofH2 in L2:

H p�m
2;0 The space of discrete-time, stable,proper transfer

functions of output/input dimensionp�m.

RHp�m
2;0 Subspace ofrational transfer functions ofH p�m

2;0 .

`n
2(J) The space of square summable vector sequences

vector dimensionn, whereJ denotes the index set
The superscriptn will be omitted ifn= 1.

ei i-th canonical Euclidean basis (column) vector.

2 Preliminaries

2.1 Orthogonal basis functions—Hambo basis
One way to construct the Hambo basis functions [5] is
considering a finite set of polesfξigi=1;���nb that are stable,
i.e. jξi j< 1, generating an all-pass transfer function

Gb(z) =
nb

∏
i=1

(1�ξ�i z)
(z�ξi)

having a balanced realization(Ab;Bb;Cb;Db) that satisfies

�
Ab Bb

Cb Db

�T �
Ab Bb

Cb Db

�
= I : (4)

It follows that the input-to-states transfer functions ofGb:

φi(z) := eT
i (zI�Ab)

�1Bb; i = 1; ::;nb;

form an orthonormal set. An orthogonal basis forH2 is cre-
ated by introducing

φi;k(z) = φi(z)Gb(z)
k�1; k= 1; � � �∞:

For convenience we also denote:Vk = [φ1;k φ2;k � � � φnb;k]
T ;

leading toV1(z) = (zI�Ab)
�1Bb and vector functions

Vk(z) =V1(z)Gb(z)
k�1: (5)
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Since the functionsfφi;kgi=1;���nb;k=1;���∞ form an orthonor-
mal basis, any elementG of H2 can be written as

G(z) =
∞

∑
k=1

nb

∑
i=1

li;kφi;k(z); with li;k =


G;φi;k

�
: (6)

with li;k the expansion coefficients. Similarly we can write

G(z) =
∞

∑
k=1

LT
k Vk(z) (7)

with LT
k := [ l1;k l2;k � � � lnb;k] = hG;VkiM.

The functionGb(z) also generates a basis forH?

2 (and thus
for the entireL2 space), by repeatedly multiplyingV1(z)
with Gb(z)�1 = Gb(1=z), as is shown e.g. in [14]. We will
denote the basis functions ofH?

2 in vector form by

Uk(1=z) =V1(z)Gb(1=z)k+1 =V1(z)Gb(z)
�(k+1); (8)

for k 2 N0. In the sequel we merely discuss systems inH2.
It is important however that most of the results can be trans
lated toH2

? by a simple mirror operation.

2.2 Signal and operator transforms
By the isomorphic property of thez-transform there exist
equivalent time-domain representations ofφi;k that form an
orthonormal basis of the signal space`2(N). They are writ-
ten asφi;k(t), orVk(t), where the indext 2 N denotes time.
The Hambo signal transform [5] of a signalx in `2(N) is
then defined by

X(λ) =
∞

∑
k=1

X(k)λ�k; with X(k) = hVk;xiM

andλ a complex indeterminate. This signal transform gives
rise to a transform operation on a dynamical system, as for
mulated next.

Proposition 1 Suppose that u2 `2(N), G2 RH2;0 and let
y(z) =G(z)u(z). DefineU andY as the Hambo signal trans-
forms of u respectively y. Then,

Y(m) =
m

∑
j=1

Mm� jU( j); (9)

with the Markov parameters Mk given by

Mk =
D

V1(z)Gb(z)
k;V1(z)G(z)

E
M
: (10)

The resulting dynamical system̃G2RHnb�nb
2;0 determined by

G̃(λ) =
∞

∑
k=0

Mkλ�k; (11)

is referred to as the Hambo operator transform of G.
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This proposition shows that theHambo operator transform
of the scalar systemG is a causal, linear time-invarian
nb� nb system. An important property of this transform
is thatG̃(λ) andG(z) have the same McMillan degree.
In [2, 3] algorithms are given for directly computing a min
mal state-space realization ofG̃(λ) on the basis of a minimal
state-space realization ofG(z) and vice versa.

Remark 2 It is important to note that the image of RH2;0 is
only a subspace of RHnb�nb

2;0 , i.e. the latter space contains
systems that are not a Hambo transform.

One can expand anyG(z) 2 RH2 in terms of the Hambo
basis functions as in (7). We now recall from [15, 1] th
connection between the coefficient sequencefLkg and the
sequence of Markov parametersfMkg of the Hambo opera-
tor transformG̃(λ). The relation will prove to be essentia
for the solution of the generalized realization problems.

Proposition 3 Let G2 H2 have an expansion as in(6).
(a) the Markov parameters Mk of the Hambo operator trans-
form G̃(λ) satisfy

Mk =

8>>><
>>>:

nb

∑
i=1

li;k+1PT
i + li;kQ

T
i ; k� 1;

nb

∑
i=1

li;1PT
i k= 0:

: (12)

(b) ]zG(z)(λ) =
∞

∑
k=1

M�

k λ�k with

M�

k = LT
k+1Bb � I +

nb

∑
i=1

fLT
k+1AbgiP

T
i +fLT

k AbgiQ
T
i ; k� 1

(13)
wheref�gi denotes the i-th element of the correspondi
vector. The matrices Pi and Qi are obtained as the unique
solutions to the following Sylvester equations.

AbPiA
T
b +BbeT

i AT
b = Pi ; (14)

AT
b QiAb+CT

b eT
i = Qi : (15)

The expression for]zG(z)(λ) will turn out to be useful when
constructing the realization algorithm in the sequel. T
main implication of part (a) of proposition 3 is that th
Markov parameters of̃G(λ) can be derived directly from
the expansion coefficients. More precisely,Mk solely de-
pends on the coefficient vectorsLk andLk+1. In the next
section this fact is used to solve the realization problem.

3 Realization

The solution to the classical minimal realization proble
[7], is based on the representation of a system in Hankel
erator form, reflecting the mapping from past input signa
36
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u 2 `2(�∞;0] to future output signalsy 2 `2[1;∞). This
operator is represented by an infinite Hankel matrixH that
operates on the infinite vectorsu andy, as in:

y =

2
64

y(1)
y(2)

...

3
75=

2
64

g1 g2 � � �
g2 g3
...

...

3
75
2
64

u(0)
u(�1)

...

3
75= Hu (16)

The Ho-Kalman realization algorithm employs the property
that any full-rank decomposition ofH

H = Γ∆ (17)

corresponds to a minimal realization(A;B;C). TheB and
C matrices of this realization are obtained by extracting the
first column of∆ and the first row ofΓ, while theA matrix
is obtained by solving the equation

H� = ΓA∆: (18)

HereH� is the Hankel matrix that is obtained by removing
the first column ofH and can be viewed as the Hankel ma-
trix associated with the systemzG(z). This algorithm yields
an exact realization provided that an underlying finite di-
mensional system exists.

In our situation the problem is to find this system not on
the basis offgkg, but by starting withfLkg. Thereto we
formulate the Hankel operator of the system (16) in terms
of a matrix representation that considers the signals to b
decomposed in terms of the generalized basis functions. W
then define the vectors̃y and ũ containing the expansion
coefficient sequences according to

ỹ=
�
Y(1)T Y(2)T � � �

�T
; andũ=

�
U(0)T U(�1)T � � �

�T
(19)

Since the coefficients satisfyY(k) = hVk;yiM andU(�k) =
hUk;uiM one can express the vectorsỹ andũ as

ỹ =

2
64

v1

v2
...

3
75y = T1y; andũ =

2
64

u0

u1
...

3
75u = T2u; (20)

wherevk anduk are given by

vk =
�
Vk(1) Vk(2) � � �

�
; anduk =

�
Uk(0) Uk(�1) � � �

�
:

(21)
The matricesT1 andT2 consist of inversez-transforms of
the orthonormal basis functionsVk(z) andUk(z). Hence they
are unitary (orthogonal) matrices:TT

1 T1 = TT
2 T2 = I . From

equations (16) and (20) it then follows that one can write

ỹ = T1HTT
2 ũ = H̃ũ: (22)

The matrixH̃ is the Hankel operator representation asso
ciated with expansions of signals in terms of Hambo basi
functions. See [2, 3] for the exact formulas ofT1 andT2.
75
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Proposition 4 With ỹ and ũ as defined in equation(19) it
holds thatỹ = H̃ũ with H̃ given by

H̃ =

2
64

M1 M2 � � �
M2 M3
...

. . .

3
75 ; (23)

where Mk are the Markov parameters of the Hambo oper
tor transform of G(z) as defined by equation(10).

It follows that H̃ coincides with the block Hankel matrix
associated with the system̃G(λ), the Hambo operator trans
form of G(z). This matrix can thus be constructed from th
expansion coefficientsLk using the result of proposition 3.

The construction of a minimal realization according to (1
and (18) requires a full rank decomposition ofH and the
availability ofH�.
A full rank decomposition ofH is obtained by any full rank
decomposition of̃H = Γ̃∆̃, because from (22) it follows that
H = TT

1 Γ̃ � ∆̃T2 is a full rank decomposition. The shifted
Hankel matrixH� is obtained by observing that it is the
Hankel matrix related to the shifted systemzG(z), satisfy-
ing H� = TT

1 H̃�T2, whereH̃� is the Hankel matrix related

to ]zG(z). The Markov parameters of this latter system a
specified by proposition 3(b), and soH̃� can be constructed.
With these ingredients it is straightforward to formulate
realization algorithm [15, 2, 3].
Unfortunately this algorithm has limited practical value a
it requires knowledge of the expansion coefficients ofG up
to infinity. The situation of a given finite expansion is con
sidered next.

For the classical basis, it is well-known that when a finite s
quencefgkgk=1;���N is given, the Ho-Kalman algorithm can
be applied to a finite submatrixHN1;N2 of the full matrixH
(with N1 +N2 = N), leading to an exact realization of th
underlying system ifN is sufficiently large.

We first treat the (intermediate) problem that a finite num
ber of expansion coefficientsfLkgk=1;���N is given of a sys-
temG 2 RH2 with known McMillan degreen. In the next
section the situation with unknown McMillan degree will b
considered.
Given a finite number of coefficientsfLkgk=1;���N of a sys-
temG2 RH2, this information can be translated to a finit
number of Markov parametersfMkgk=0;���N�1 of G̃ accord-
ing to (12). IfN is sufficiently large, allowing the construc
tion of a finite matrixH̃N1;N2 with N1+N2 = N�1 that has
the same rank as̃H, a standard Ho-Kalman algorithm (in
the transform domain) can be applied to arrive at a minim
realization(Ã; B̃;C̃; D̃) of G̃. Applying the inverse Hambo
transform [2, 3] then yields a minimal realization ofG.

We recall from [1, 2] an important property of the expansio
coefficients of a systemG(z), that will be essential for the
solution of the partial realization problem, when no know
edge about the McMillan degree is available.
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Proposition 5 Given a system G(z) 2 RH2, let (Ã; B̃;C̃; D̃)
be a minimal state space realization of the Hambo trans
form G̃(λ). Then there exists a matrix X such that the ex
pansion coefficientsfLkg of G satisfy

Lk = C̃Ãk�1X; (24)

4 Minimal partial realization

This section provides an algorithm that solves the minima
partial realization problem as formulated in the introduc-
tion. In [16] it was shown that a unique solution (mod-
ulo similarity transformation) to the classical minimal par-
tial realization problem is obtained through application of
the Ho-Kalman algorithm, provided that a certain rank con
dition is satisfied by the sequence of Markov parameter
fgkgk=1;::;N.
A similar result can be derived for the generalized case
Given the coefficientsLk for k = 1; ::;N one can calculate
the Markov parametersMk for k = 0; ::;N�1 as described
in section 2. This might suggest that the problem can b
solved as in the previous section under the condition tha
the sequencefMkgk=1;::;N�1 satisfies the realizability condi-
tion given in [16]. This condition is however not sufficient
to guarantee that the resulting realization(Ã; B̃;C̃;M0) con-
stitutes a valid Hambo transform (see also Remark 2). W
require a realizability criterion that is specifically tuned to
our problem.
The key to find this condition is provided by Proposition 5,
which shows that for a systemG2 RH2 the sequencesfLkg
andfMkg are realized by state-space realizations that sha
the state transition matrix̃A. This leads us consider the se-
quence of concatenated matrices

Kk =
�

Mk Lk Lk+1
�
; k= 1; ::;N�1: (25)

ParameterLk+1 is included in view of the fact thatMk is
obtained on the basis ofLk andLk+1.
The following lemma provides the conditions under which
the minimal partial realization problem can be solved.

Lemma 6 LetfLkgk=1;::;N be an arbitrary sequence of nb�
1 vectors and let Mk and Kk for k = 1; ::N� 1 be derived
from Lk via relations (12) and (25). Then there exists a
unique minimal realization (modulo similarity transforma-
tion) (Ã; B̃;C̃) with McMillan degree n, and an n�1 vector
B such that

(a) Mk = C̃Ãk�1B̃ for k= 1; ::;N�1, and Lk = C̃Ãk�1B for
k= 1; ::;N,
(b) the infinite sequences[ Mk Lk ] := C̃Ãk�1[ B̃ B ]
satisfy relation(12) for all k 2 N,

if and only if there exist positive N1;N2 such that N1+N2 =
N�1 and

rankĤN1;N2 = rankĤN1+1;N2 = rankĤN1;N2+1 = n; (26)

whereĤ i; j is the Hankel matrix built from the matricesfKkg
with block-dimensions i� j.
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Condition (26) is in fact equal to the condition given b
[16] applied to the sequencefKkg. Note that it can only
be checked forN > 2. On the basis of lemma 6 we can
formulate the following proposition that also provides a
algorithm to solve the minimal partial realization problem

Proposition 7 Let fLkgk=1;::;N be an arbitrary sequence
of nb� 1 vectors, then there exists a minimal realizatio
(A;B;C) of McMillan degree n, such thatfLkgk=1;::;N are
the first N expansion coefficients of G(z) =C[zI�A]�1B, if

1. there exist positive N1;N2 such that N1+N2 = N�1
and condition(26)of lemma 6 holds,

2. the minimal realization(Ã;
�

B̃ X2 X3
�
;C̃; D̃),

resulting from application of the Ho-Kalman algo-
rithm to the sequencefKkgk=1;::;N�1, is stable.

Furthermore, the matrices A;B;C are derived by appli-
cation of the inverse Hambo transform to the realizatio
(Ã; B̃;C̃; D̃).

Remark 8 The requirement that̃A is stable assures that the
Ho-Kalman algorithm yields a valid Hambo transform o
a stable system. However it is straightforward to exten
the algorithm of proposition 7 to the case whereÃ has no
poles on the unit circle. If̃G has unstable poles, it has to be
separated in a stable and unstable part. The unstable p
is transformed by mirroring it to a stable function and afte
transformation, mirroring the transform back to an unstab
function. Hence the only case which is actually not cover
by this algorithm is wheñA has poles on the unit circle.

Remark 9 (Interpolation) It is well known that approx-
imating a transfer function G(z) in terms of a finite set
of rational basis functions interpolates to G(z) and/or its
derivatives in the points1=ξi , with ξi the poles of the
basis functions [20]. It is not surprising that there ex
ists a one-to-one correspondence between the coeffic
vector sequencefLkgk=1;::;N and the interpolation data

fdk�1G
dzk�1 (1=ξi)gk=1;::;N. Explicit expressions for this relation

are given in [2, 3]. One can hence solve the following in
terpolation problem, using the algorithm of proposition 7.

Problem 10 Given the interpolation conditions

dk�1G
dzk�1 (1=ξi) = ci;k; ci;k 2 C

for i = 1; ::;nb and k= 1; ::;N (N > 2), with ξi 6= 0 distinct
points, inside the unit disc, find the RH2 transfer function of
least possible degree that interpolates these points.

5 Approximate realization

The classical partial realization algorithm can be applie
as a system identification method [21, 9], building a Ha
kel matrix with (possibly noise corrupted) expansion co
efficients and by applying rank reduction through singul
36
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Figure 1: Impulse response of the example system.

value truncation. This can be applied similarly to the gen
eralized situation. Here an example is given in which this
method is compared with the classical approximate realiza
tion method. Besides in an identification context, the ap
proximate realization procedure can also be applied as
model reduction method.
In comparison with the classical case, approximate realiza
tion in the generalized case has one additional difficulty, du
to the fact that not every system inRHnb�nb

2;0 is the Hambo
transform of a system inH2. Although the inverse transform
can be applied to any system inRHnb�nb

2;0 , the resulting sys-
tem in H2 will not have a one-to-one correspondence with
the original. In the exact realization setting, this problem
does not arise. The full implications of this phenomenon
are not fully understood yet and will be the subject of fur-
ther research.

As example we compare the application of the generalize
approximate realization method with the method of [9]. We
consider a 6-th order SISO transfer functionG(z), given by

10�3 �0:564z5+43:9z4�21:67z3�1:04z2�95:7z+75:2
z6�3:35z5+4:84z4�4:44z3+3:11z2�1:48z+0:318

:

Fig. 1 shows the impulse response ofG(z), revealing that
the system incorporates a mix of fast and slow dynamics. 1
simulations are carried out in which the response of the sys
temG(z) to a Gaussian white noise input with unit standard
deviation is determined. An independent Gaussian nois
disturbance with standard deviation 0:05 is added to the out-
put. This amounts to a signal to noise ratio (in terms of RMS
values) of about 17 dB. The length of the input and outpu
data signals is taken to be 1000 samples. For each of the 1
data sets two basis function models of the form

Ĝ(z) =
N

∑
k=1

L̂T
k Vk(z); (27)

are estimated using the least-squares method described
[17]. The first model is a 40-th order FIR model. Hence
in this caseVk(z) = z�k and N = 40. The second model
uses a generalized basis that is generated by a second or
all-pass function with poles 0:5 and 0:9. For this model 20
coefficient vectors are estimated. Hence the number of est
mated coefficients is equal for both models. We now apply
the approximate realization method using the estimated ex
pansion coefficients of both models, for all 10 simulations
77
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Figure 2: Step response plots of the example system (solid) a
the models obtained in 10 simulations with approx
mate realization using the standard basis (dash-dott
and the generalized basis (dashed).

In either case a 6-th order model is computed, through tru
cation of the SVD of the finite Hankel matrix. In figure 2
step response plots of the resulting models are shown. I
seen that approximate realization using the standard ba
results in a model that only fits the first samples of the r
sponse well. This is a known drawback of this method. Em
ploying the generalized basis, with poles 0:5 and 0:9 results
in models that better capture the transient behavior. App
ently, a sensible choice of basis can considerably impro
the performance of the Kung algorithm [9].

6 Conclusions

In this paper an algorithm is derived that solves the minim
partial realization problem for expansions in terms of gene
alized orthonormal basis functions, generated according
the Hambo basis construction. The realization problem
solved by linking it to the classical realization problem fo
mulated in the Hambo operator transform domain. The r
sulting algorithm can also be used in an approximate sen
e.g. for the purpose of model reduction or in a system ide
tification setting.
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