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Approximate Identification with Closed-loop
Performance Criterion and Application to LQG
Feedback Design*
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An iterative approach of identfication with properly filtered signals and
control design appears to yield a nonunal model that is better suited for
feedback design than a model resulting from an unweighted open-loop

identification.
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Abstract—A model-based controller generally works better
with the model than with the modelied plant due to the
modelling error This difference between the performances
can be made small by selecting a model that 1s accurate at the
closed-loop relevant frequencies In this paper it 1s shown
that an iterative approach of identification and control design
can lead to a model that 1s much better swmted for feedback
design than a model resulting from an unweighted open-loop
identificaion In this iteration each identification 1s
performed such that a certain closed-loop criterion function
1s mmmized This 1s accomplished by closed-loop 1dentifica-
tion with persistent set-point excitation and a proper signal
fitenng Each control design step employs the latest
identified model to construct an LQG compensator The
performance requrements are gradually increased dunng the
1teration

1 INTRODUCTION

THE DESIGN OF a hnear control system 1s
frequently based on a model of the plant under
consideration A model is very unhkely to be an
exact description of the system. Due to the
model error the performance of the controller,
designed for the model, will not be obtained
when the controlier 1s applied to the real system
Obviously, 1n order to have a controlled system
performance that 1s close to the designed
performance for the model, the model error
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should be tuned towards the control objective.
The need for a high accuracy near the cross-over
frequency 1s well recogmzed This 1s however
only a partial answer to the problem. In 1its
generality the question is how to properly define
a closed-loop relevant way of evaluating the
model error.

When the model 1s obtained from identifica-
tion experiments, the problem above boils down
to the problem of finding a closed-loop relevant
identification critenon Several authors have
pad attention to this problem An ad hoc
solution 1s obtaned in Balas and Doyle (1990),
which addresses a control problem with a
prespecified bandwidth. In Gevers and Ljung
(1986) experiment design for mimmum variance
control 1s studied 1n the prediction error
identification framework The closed-loop of the
model-based controller 1s compared with the
closed-loop of the optimal, system-based, con-
troller The difference of the resulting two
closed-loops 1s shown to be mimmized by an
optimal identification experiment In Rivera et
al (1990) the prediction error method 1s apphed
as well, but there a desired sensitivity 1s used as
a weighting function for open-loop 1dentification

In this paper we will not use desired feedback
transfer function matnces, nor will we use
knowledge of a plant-based controller Instead
we take the following starting point In order to
identify a model that s swtable for control
design, we should be able to identify a model
that accurately describes the closed-loop relevant
system properties 1n the presence of a given
compensator The main problem considered 1n



680 R G HAKVOORT et al

this paper 1s how to perform an identification
experiment such that the resulting model 1n
closed-loop optimally resembles the system 1n
closed-loop for a give compensator If such a
model has been 1dentified, 1t can subsequently be
used to design a new compensator with slightly
increased performance requirements, which 1n
this paper correspond to a higher bandwidth of a
servo-controller The rationale 1s that the model
will still be a good representation of the plant for
a new compensator, provided that this new
compensator differs not too much from the
previous one Therefore the performance
improvement that 1s achieved for the model 1s
expected to be achieved for the modelled
system as well Next a new identification 1s
carned out in order to obtan a model that
accurately describes the system for the new
compensator, and the entire procedure 1s
repeated until a satisfactory controller perfor-
mance 1s achieved A similar iterative approach
has also been suggested in Zang et al (1991) for
LQ control design In Schrama (1992a, b) 1t 1s
shown that such an i1terative scheme of
identification and controller design 1s actually
necessary for high performance control design

In the hght of this iterative scheme, we will
analyze the identification problem mentioned
above A solution will not only be shown to
exist, but also to be simply applicable using
standard 1dentification tools As a control design
method we will use LQG feedback design We
utilize the prediction error identification method,
Ljung (1987), and the concept of a performance
criterion as introduced mm Gevers and Ljung
(1986) We will only consider the asymptotic bias
contribution to this performance criterion,
variance aspects will not be considered A
closed-loop performance cniterion 1s defined and
the design vanables of the prediction error
method are chosen such that this criterion
function 1s actually mmimized by the identifica-
tion procedure This makes the identification
cnterion compatible with the LQG control
objective Usmg an iterative procedure of
closed-loop relevant identification and control
design, a model for high-performance control
design 1s constructed, that could not have been
obtained from open-loop experiments alone

Preliminary results on this problem have been
published in Hakvoort (1990) and more recently
in Hakvoort et al (1992) The LQG objective
has also been addressed in Bitmead et al (1990),
but there the identification procedure mimmizes
a model error that pertamns to robust stability
rather than to robust performance

The outhne of the paper 1s as follows In the
next section the prediction error identification

procedure is summarized In Section 3 we define
the closed-loop performance criterion of con-
cern In Section 4 we adjust the prediction error
method such that this cntenon function 1s
actually mimimized Then 1n Section 5 we
consider an example 1 which the iterative
scheme 1s put into practice for a particular LQG
control objective In Section 6 we discuss the
results and we make some general observations
concerning the 1nterplay between identification
and control design The paper ends with a
summary and conclustons

2 PREDICTION ERROR IDENTIFICATION

In this sectton we adopt the relevant aspects of
prediction error 1dentiffication from Ljung
(1987)

Consider a discrete-time representation of a
linear, time-invanant SISO system with additive
stochastic disturbances

& y(1) = Go(q)u(t) +v(r)
= Go(q)u(r) + Hy(q)e(t), o)

where Gy(q) 1s the determimstic and Hy(q) the
stochastic part of the plant, u(¢) and y(t) are
respectively the mput and output at time ¢ and
e(¢) 1s discrete white noise with zero mean value,
q 1s the shift operator qu(¢)=u(t+1) The
leading coefficient of Hy(q) 1s one

We choose a model set with a fixed noise
model,

M y(0)=G(g, Ou®) + H(e(), ()

where £(¢t) 1s the one step ahead prediction
error G(q, 8) and ﬁ,(q) are defined analogo-
usly to Gy(q) and Hy(q) The leading coefficient
of Hf(q) 1s one We do not assume that the true
system & 1s 1n the model set # For notational
convenience we introduce

To(q) =[Go(q) Ho(q)),
T(q, 0)=[G(q, 6) H(q)]

An estimate of 6 1s obtained by mimmizing the
quadratic norm of the prediction error with
respect to 8

€)

A 183!
f=argmm—= > £, 0), 4
o N =0

with N the number of samples This yields the
estimate T'(q, 6)

In Ljung (1987) 1t 1s shown that under weak
conditions the asymptotic parameter estimate 1s
given by

Im §=6*=argmm Ec%(t,0) wp 1 (5

N—» ]

According to Janssen (1988) this can be given
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the frequency domain interpretation

j" T(e'”, 0)®(w)T"(e™'®, 0)
- \Hy (e )

dw,

(6)

0* = arg mmn
]

where T 1s the model error defined as

T(q, 8)=T(q, 6) - To(q) (7
and ®(w) 1s the spectrum

[ @) ()
“’(“’)‘[q>w(w) 4>e(w)]’

with @, (w) the spectrum of u(¢) and ®,.(w) the
cross-spectrum of u(t) and e(t) This result (6)
also holds under closed-loop conditions In that
case a necessary requirement 1s that either the
controller or the model G(q, 8) and the system
G,(q) have one delay, see Janssen (1988)

The mput spectrum @, (w) and the cross-
spectrum &, (w) dictate the frequency distrnibu-
tion of the model error (see Wahlberg and
Ljung, 1986, for details) As these design
vanables are at our disposal, we can choose
them such that the model 1s optimal 1n view of
the intended use We signify the design varnables
as

(8)

D = {Pu(@), Puc(w)} 9)

The spectrum &,(w) can be specified by an
open-loop mput design, but a nonzero ®,.(w)
can be realized only by introducing feedback n
the identification and specifying some external
reference signal Of course one cannot assign
®,(w) as this would be 1n contradiction with the
nature of a noise

3 A CLOSED-LOOP PERFORMANCE CRITERION

In this section we will define a closed-loop
performance criterion to measure the model’s
capacity to describe the controlled operation of
the plant We will define the criterion function
for a given controller, 1rrespective of the apphed
control design techmque At a later stage this
controller will be determined by means of LQG
feedback design

We consider the closed-loop configuration of
Fig. 1, in which the plant 1s controlled by the
fixed two-component controller (C,, C;) which 1s
assumed to be known The feedback system 1s
driven by an external disturbance ¥ and an
external reference signal 7, which are assumed to
be mutually uncorrelated The bars represent the
operational conditions under which the model
must appropnately describe the plant Hence 7
and & are signals with fixed spectra determined
by the operational conditions

AUTO 30 4-1

C, +_T 2 Gy
C.

Fic 1 System 1n closed-loop
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-

The output y satisfies

coN Go(9)Ci(q)
Y= G @)

Hy(q)
1+ Go(q)Cx(q)

F(t) + e

(10)
A similar equation can be wntten down for the
model by replacing Gy(q) and Hy(q) with

G(g, 6) and H(q) The model 1s a good closed-
loop description of the system if the error terms

G, é)?l(‘]) __Gu(9)Ci(g)
1+ G(q, 8)Cx(q) 1+ Go(q)Calq)
and
I-Z(qﬁ) _ Ho(‘l)
1+G(g, 8)CAq) 1+Gyq)Cxg)’

are small i an H,-sense We define a

closed-loop performance cnterion J;(2) as the

2-norm of these error terms weighted with the

signal spectra,

@ =[ (| XN,
=M1+ G(e'”, 8(D))Cy(e'®)

Go(e')Ci(e") |

_1 n G()(e‘w)CZ(e'w) (D,{a))
+ ’ Hf(elw)
1+ G(e'”, 8(D))Cy(e'®)
Ho(elw) 2
TG %) der

where the argument % has been added to
emphasize the dependency of the identification
result on the design vanables Note that, due to
the presence of the term H,/(l + GC,) m the
criterion (11), this criterion function 1s different
from the one used in Zang et al (1991) Also
note that this criterion has been formulated for
fixed ®; and ®; We will not directly address the
problem of designing an optimal ®;, 1¢ we will
not optimize the criterion function (11) over @;,
but assume ®; (and ®;) to be determined by the
operational conditions of the plant The criterion
function (11) 1s small if the closed-loop of the
model 1s close to the closed-loop of the system in
respect to the spectra of the signals 7 and € that
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dnve the feedback system The following
proposition gives a useful alternative expression
for J,(9)

Proposiion 31 The criterion
J\(D) satisfies

performance

x 1
“@*J;u+cw%m9»qwﬂﬁ

x T(e'®, (D) P(0)TT (e, 8(D)) dw,

(12)

where T(g, 6) 1s given by equation (7), and
according to Fig 1 the signal a(¢) satisfies

_oN Ci(g) __Ho(q)Cx(q)
=17 G P T+ Gl Cta)
and ®(w) satisfies (13)
= _[Paw) Pi{w)
¥ o50) oy 09

Proof. See AppendixB

We want to formulate an identification
procedure such that this performance criterion
Ji(2) 1s mmimized More precisely the objective
is to determine the optimal design vanables

9l opt = arg ménjl(@) (15)

According to (9) these design vanables consist of
P, (w) and P, (w), the signal spectra during
identification Once more 1t 15 emphasized that
these spectra correspond to the identification
stage, and are free to choose, they are design
vanables This 1s 1n contrast with the spectra
P;(w) and ®;(w), which are fixed as they are
determined by the operational conditions of the
plant If the identffication 1s carned out
according to the optimal choice of design
vanables, then the resulting model 1s an optimal
closed-loop description of the system. Note that
this optimal design 9, ., possibly 1s a function of
the chosen controller (C,, C,) as the criterion
function (11) 1s a function of this controller.

4 OPTIMAL IDENTIFICATION STRATEGY

In this section we will derive the optimal
choice of design vanables such that the
closed-loop performance criterion J,(9) defined
mn (11) 1s mimmmized First we recapitulate some
theory presented in Gevers and Ljung (1986),
where the general scalar cnterion J5(92),

Io(@)= [ T, B@)T(w)

x TT(e™'®, 8(D))dw,  (16)

has been introduced as a measure for the model
quality In here I'(w) 1s a 2X2 Hermitian
weighting matrix that descnibes the relative
importance of a good fit at different frequencies
depending on the intended use of the model

For the number of samples increasing to
mnfimty, 1t 1s shown 1n Gevers and Ljung (1986)
that

]!]lm Jo(D) =Jp(D)

= [ T 6*@)r)

x TT(e™'*, 6*(D))dw wp 1,
17)

where J; 1s a bias-contnibution to the perfor-
mance cnterion J;. We consider the optimiza-
tion problem

Do = arg llgl Js(D) (18)

In Gevers and Ljung (1986) this optimization
problem has been solved by matching the
critenion function (17) to the criterion that 1s
mimimized 1n the 1dentification procedure (6). In
this way 1t 1s achieved that the identification (6)
actually performs the desired minmmization (17)
The formal result 1s given 1n the next Theorem

Theorem 41 (Gevers and Ljung, 1986) The
optimal choice of design vanables (18) 1s given
by

P op( @) = D opi( @) -
m—— cl'(w), m = cI'(w),

(19)

where T, 1s the ith row, jth column entry of T
and c is an arbitrary positive constant.

We intend to apply this result to the situation
of the performance crnitenon (12) This can
however not be done straightforwardly The
reason is that the cnterion function J; 1n (16) 18
quadratic in the model error, while J; 1s not a
quadratic criterion function as the corresponding
weight I'(w) would depend on G(q, 8(9)) We
proceed by first introducing the auxihary
quadratic performance criterion J, as

= 1
@)= j_,, 11+ Gy(e'*)Cole' )P

x T(e'®, 8(D)P ()T (e, (D)) dw,

(20)

where G; 1s some fixed model This criterion
function 1s quadratic in the model error, with the
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(constant) weighting matrix ['(w) given by
()
11+ Gy(e'*)Co(e')f

So Theorem 4.1 can be straightforwardly applied
to find

I(w) = 1)
B, op = arg min Jy(D), (22)

which 1s for ¢ = 1 given by

Du(w) |y (')

. _ q)u,opt(w) = |1 + éf(e‘w)C2(elw)|2
2,0pt ) (w)= D) |H,(e””)|2
ue,opt Il + G,(e"")Cz(e'“’)lZ
(23)

Next we define the discrepancies 6,(w) and
8,(w) as

0~ [T e T

T+ G, é(glzl eeor @
6(w) = 1L+ G(e'™, 9(932.0,,.)) CAeT

i+ c‘:,(eulv)cz(emnz : (25)

which are of use 1n the next Theorem

Theorem 4.2 Consider the performance cn-
terion defined by (11) If a fixed noise model
Hf(q) =1+ Gf(q)Cz(q) 1s used in the prediction
error identfication and if the number of samples
tends to infinity then the choice of design
varnables

- CI)u,opt(a,) = ¢’E(a))
@2'0[’! - {(Due opt(w) = (bﬁé(w)’

converges to the optimal solution @, ., 1if 8,(@)
and 8,(w) converge to zero, 1€

him Jl(gz.opt) - Ji(2, opt) =0 27
8 60

(26)

Proof If the fixed noise model satisfies Hf(q) =
1+ G'f(q)Cz(q) then the design (26) 1s 1dentical
to the optimal design (23). This optimal solution
has of course the property that J,(9D; )=
J(Dy o) Using this and Proposition 31 we
obtain

J1(D2,0pt) — J1(D1,0p1)
= (J1(D2,0pt) — J2(D2,0p))
+ (J2(D2,0pt) — J2(D1,0p1))
+ (J2(D1,0pt) = J1(D1,0p1))

= (Jl(@zopt) - JZ('OZZ.opt))
+ ("2(@1,opt) - Jl(@l.opt))

= 1
- j_,, (|1 +G(e'®, B(D2,op))Cale™ )

T
Il + Gf(etw)cz(elw)lz
X T(erw’ é(@2.opt))‘i)(a))
x T7(e™, 6(Dz,0p)) dw

x 1
+ ( A 1w
L, 11+ Gy(e'“)Caole™)f

1
- |1+ G(e"“, 9(@|,opt))cz(em)|2>
x T(e', 8(D; op))P(@)
X TT(e_"”, é(@l,opt)) do

= I:[ 62((1))T(e'w, 9(@2,opt))
X @(m)TT(e"‘”, é(@2,opt)) dw
+ [‘ 8 (w)T (e, 6(D1.0p1))

x &(w)TT(e™**, 8(D1.0p)) d0—0
if 8,(w)—0, 6(w)—0. (28)
O

This means that the choice of the design
varnables (26) generally 1s a good choice, and 1t 1s
even the best possible design (in a quadratic
error sense) if both 8, and 8, vamsh From
equation (25) 1t follows that &, 1s small if G‘,(q)
is close to G(g, 8(2;,0pt)), Which 1s the result of
the identification conducted according to
Theorem 4 2; more specifically, the correspond-
ing sensitivity functions have to be similar This
discrepancy 6, can be calculated afterwards
Moreover 1t can be reduced to an arbitranly
small value by an iterative procedure In each
step of this iteration G,(q) s chosen as the
identification result of the previous step This
means that the fixed noise model H;(q)=
1+ G;(q)Cx(q) 15 determined iteratively, in an
mner-loop iteration that 1s independent of the
iteration of identification and control design
outhned in the introduction In this inner-loop
iteration an optimal nominal model 1s 1dentified
for a fixed controller Based on the estimated
G(q, 8) a new fixed noise model 1s constructed
and a new model G(gq, #) 1s esimated with this
new fixed noise model, based on one and the
same data set Wahlberg and Ljung (1986) have
shown that prefiltering the data u(f) and y(¢)
with a stable linear filter L(g) 1s equivalent to
changing the noise model Hf(q) to Hf(q){,“(q)
Hence the choice of a fixed noise model H;(q) =
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Fic 2 Optimal identification strategy

1+ G,(q)Cz(q) may 1n practice be realized
by applyng a filter L(g)=(1+ G;(¢)Cx(¢))™"
in combmation with output error identification
(noise model 1s fixed to one)

From equation (24) 1t follows that §, 1s small if
Gi(q) 15 close to the (unknown) optimal
identification result G(q, 0(92, opt)) This dis-
crepancy 6, cannot be determined precisely, but
1t 1s small 1if for example the modelling error 1s
made sufficiently small, 1e 1if both
G(g, (Do) and G(q, (Ds.0p)) (or equiv-
alently G,(q)) are close to the real system
Go(q) If 8, or &, are not zero (which may often
happen n practice) then 9, , 1s 1n general not
equal to @, ., In that case the design (26) 1s
not optimal any more, but because of continuity
considerations 1t 1s still expected to be a very
good design

The optimal 1dentification strategy derived 1s

visualized in Fig 2 It says that the input
spectrum (and the cross-spectrum of noise and
mput) n the identification experniment should be
the same as those 1n the operational conditions
(Fig 1), which means identification in closed-
loop The data collected under operational
conditions have to be properly filtered in order
to obtain the optimal model The interpretation
of the optimal 1dentification 1s that 1t includes a
weight at those frequencies where the
closed-loop of the plant 1s close to the stability
margin (& contains much energy) and/or where
the closed-loop of the model i1s close to the
stabtlity margin (L(q) has a large gain) We
notice that in the identification procedure no
perfect knowledge of the true system Ty(q) 1s
required, which 1s a very attractive property It s
mentioned that 1n practice the identification
procedure will only work if identifiability 1s
ensured by using a persistent exciting external
reference signal 7 In Appendix A the result of
the optimal 1dentification strategy 1s extended to
the MIMO case

As clanfied in the mtroduction this optimal
identification strategy, derived for a given
controller (C,, C3), can be combined with an
iterative scheme of identification and controller
desgin 1n order to arrive at a high-performing
controller This iterative scheme 1s visualized 1n
Fig 3 As explamed the iteration may contain
subiterations at the moment that an optimal
model 1s 1dentified as the prefilter 1s dependent
on the (unknown) 1dentification result G(q, 8)
So the nner-loop 1iteration in Fig 3 corresponds
to the iterative prefilter (or fixed noise model)
design, for which no new measurements are
needed The outer-loop iteration involves the
implementation of a new controller and collect-
ing new data

controlled by C*~!

Experimental data of plant G,

Iterative preﬁlter design
L=

—-—-—-—
Gigi-l

— Optimal 1dentification
= HZI] strate,
é'

Control Design

Cl

FiG 3 Iterative scheme of identification and control design, : = 1, 2, 3, ,C'=0
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5 APPLICATION TO LQG FEEDBACK DESIGN

The theory of the previous sections has been
developed without making assumptions about a
specafic controller design method. In the
example of this section we will employ one
particular controller design procedure, viz LQG
feedback design, in order to illustrate the
presented 1dentification procedure We shortly
summanze the relevant topics For a more
detailed discussion the reader 1s referred to, for
example, Maciejowsk: (1989, ch 5)

Consider the discrete time SISO model 4 for
which a controller has to be designed

{x(t + 1) = Ax(t) + Bu,,(t) + Fw(t)
Vu(t)  =Cx(t)+v(t) ’

where w and v are zero-mean white noises with
covariance matrices

E{wwT} =W =0, E{wT}=V>0,
E{wvT}=0

The signal u,, 1s the control signal to the model
and y,, 1s the output of the model Now the LOG
problem 1s to devise a feedback control law
which minimizes the cost function

(29)

(30)

N—-1
Jiog = Im E{—l— Yy (x"QOx +u,I,Ru,,,)}, (31)
R Y =
with Q a positive semi-definite weighting matrix
and R a positive definite weighting matnx.
There are several weighting matrices that we
can freely choose We want to investigate the
mpact of the identification procedure on the
quality of the resulting controller and not the
mpact of the design weight. Therefore we
pragmatically fix the weighting matrices,

F=B, W=1, V=¢, 0=C"C, R=c
(32)

Then the LQG cniternion function becomes

N—1
Jeoa=lm E{+S (30 + e o)} 33
N—= N (o
and 1t implies that the white noise w 1s assumed
to be additive at the wput u, The latter 1s
equivalent to stating that a white noise external
reference signal r enters at the mput This
actually determines the operational conditions n
the Figs 1 and 2, 1e Ci(g)=1 and 7 1s white
noise

The parameter ¢ 1s the only design vanable
that 1s left and we will use 1t to establish the
performance requirements on the controller A
relatively small value of ¢ gives less weight to u,,
in the cnterion function, and the output 1s
assumed to be disturbed less, which gives nise to

a tighter feedback-loop This will generally also
lead to less robustness, even though no LQG
controller optimizes robustness at all.

Now we apply the optimal identification
procedure derived 1n the previous sections in
combmation with this fixed controller design
procedure, performing an iteration of identifica-
tion and feedback design. We use low order
models 1n order to emphasize the effects due to
undermodelling and use 4000 samples in the
identification such that the vanance effects can
be neglected We compare the outcome of the
iteration with the result of a direct open-loop
identification The simulation example 1s carned
out 1n continuous time due to the availability of
software to design continuous time LQG
controllers This means that the discrete time
models that result from the identification are
transformed to continuous time, assuming zero
order hold. The error ntroduced by this
transformation 1s very small as the sampling rate
has been chosen high

We consider the fifth-order system shown in
Fig. 4 Open-loop measurements are carned out
with a white noise input signal and about 7%
coloured noise being added to the output. Also
m Fig. 4 the result of the open-loop identifica-
tion of a strictly proper third-order output error
model 1s given The low-frequency fit appears to
be very good Next we design an LQG controller
for the model, choosing ¢ =0 0002 In Fig 5 the
Bode diagram of this controller 1s shown In

102 T

- 3
o -
@ - 4
o 4
2
= 1071 %
a, E E
B r ]
o C A\
10—‘ —_— B R i AL ata
100 104 102
frequency
0 T ——rT
9
2]
o
=
n‘ \\‘\
_500 L Lol b i) I TR W N |
100 10! 102
frequency

FiG 4 Bode diagram fifth-order system (sohd) and
third-order output-error model (dashed) obtained from
open-loop expenments



686 R G HAKVOORT et al.

103

102

amplhitude

10!

£.o0 $CQ08M 1 1) LLINEH

" Aol d 1 A1 RS 1 bl L

100
100 10!

—
<
[

frequency

-50 T T ¥ T TrrIrr T T

-100

phase

-150

_200 i L ] A i ALl
100 101 102

frequency

Fic 5 Bode diagram controller designed for the model
identified 1 open-loop with ¢ = 0 0002
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FIG 6 Nyqust diagram of GC (dashed) and G,C (sohd),

where G 1s the model 1dentified 1n open-loop and C 1s the

LQG controler designed for this open-loop model with
¢ =0 0002, the * denotes the point —1

Fig 6 the Nyquist diagram of controller times
model and controller times system 1s given,
clearly indicating the model error near the
cntical point —1 In Fig 7 the Bode plot 1s
presented of the resulting closed-loops of the
controller impiemented on the model and on the
system It turns out that the controller
destabihzes the system' Apparently the model
identified 1In open-loop does not describe the
relevant closed-loop properties of the system
sufficiently well

We now want to identify a third-order model
that gives an optimal closed-loop description of
the system, using the identification scheme of
Fig 2 We do this 1n an iteration of identification
and feedback design as shown in Fig. 3 First we
design a low-performance controller (¢ = 0.0008)
for the model 1dentified in open-loop Then
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FiG 7 Bode diagram closed-loops G/(1+ GC) (dashed)

and Gy/(1+ G,C), where G 1s the model identified in

open-loop and C i1s the LQG controller designed for this
open-loop model with ¢ =0 0002

closed-loop measurements are performed with a
white noise external reference signal and again
about 7% coloured additive output noise Using
these measurements an output error model 1s
identified applying a proper prefilter which 1s
calculated using the designed controller and the
open-loop 1dentification result Next we design a
new controller for the resulting model with
increasing  performance requirement (¢ =
0 0004) Then we conduct a new identification
and we design a controller with ¢ =0 0002 We
repeat this last step till there 1s no sigmficant
change 1n controller or model

Altogether four iterations were sufficient to
reach the final result Bode plots of the resulting
controllers are shown in Fig 8, which displays
the increasing control action Figure 9 reveals
that the resulting optimal model has a poor
open-loop fit The closed-loops of the final
controller implemented on the optimal model
(designed loop) and on the system are depicted
m Fig 10 The controller designed for the
optimal model gives a satisfactory, stable
performance for the system We remark that the
optimal model has a bad open-loop behaviour,
but 1t 1s nevertheless more suted for feedback
design than the model identified 1in open-loop

6 DISCUSSION

In the example of the previous section 1t has
been shown that for LQG controller design the
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optimal 1dentiffication strategy of Fig. 2 in
combination with the iterative scheme of Fig 3
yields a model that 1s superior to a model
obtained by a simple open-loop identification
This means that a combined 1terative approach
of 1dentification and controller design can lead to
results that are better than those obtained from
open-loop considerations alone It 1s true that
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Fic 10 Bode diagram closed-loops G/(1 + GC) (dashed)

and Gy/(1 + G,C), where G 1s the optimal model and C 1s

the LQG controller designed for this optimal model with
¢ = 00002

the open-loop 1dentification was inappropnately
weighted, but the point 1s that the optimal
weighting 1s not known beforehand and needs to
be determined 1teratively The iterative aspect 1s
essential, because a model 1s needed for
controller design and knowledge of the control-
ler 1s needed 1n order to identify a good model
The motivation for the apphed iterative
approach 1s, as already has been argued, that a
model optimal for a certain controller will be
close to optimahty for a shghtly different
controller This explains why the procedure
converged 1 the example of the previous
secton However 1t also means that the
procedure mught very well diverge if in each
iteration the performance requirement 1s 1n-
creased too much For in that case optimalty 1s
completely lost for the new controller Presently
it 1s unknown under what conditions conver-
gence can be guaranteed In the example of the
previous section the controller update has simply
been carned out by tnal and error However
also n the case that the performance require-
ments are increased slowly, there 1s a lmit on
the achievable performance This hmit s
determined by the required controller robust-
ness The controller always has to be robust in
the sense that 1t has to stabilize both the model
and the system In the example in the previous
section this means that the value of ¢ cannot be
decreased arbitranly, as at some moment the
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controller 1s not robust enough and it will
destabilize the system

The results of this paper, based on an
asymptotic bias analysis, can also be considered
as a justification of other iterative schemes such
as the one presented 1n Zang ef al (1991) There
a different closed-loop performance criterion 1s
used, as the noise 1s treated differently, and
moreover the controller design criterion 1s
strongly connected to the identification result
and always based on an LQ objective In our
approach the controller design 1s basically
completely free to choose, in the example 1n the
previous section only a choice has been made for
LQG design with a very simple choice for the
weighting matrices

We now take a closer look at the criteria that
are mmmzed n the identification and the
controller design procedure In the LQG
controller design procedure the quadratic cri-
terion Jyog mm (33) 1s mmmmmized For a high
performance controller (¢ =0 0002 for example)
the contnibution of Y y2(t) domnates this
cnterion function The external reference signal
1s white noise so that the LQG controller design
procedure actually (approximately) minimizes

Joa(G) = IGU + C,G) 7|, (34)

In the identification procedure the quadratic
criterion J; 1n (11) 1s mimmized As the external
reference during identification 1s white noise,
this means that the identification procedure
minimizes

L =Gl + C:Go) ' = GU + C,G) 7y, (35)

where we neglected the contribution of the
noise Using the tnangle inequality we obtain

JLoc(Go) = IGoll + Czco)—lnz
SJLOG(G) +Ji, (36)

which means that the criterion value J; 6(Gy) 18
bounded Moreover, if the model 1s a good
description of the system, J; o(Gp) will be close
to J,oc(G), which imphes that 1n that case the
controller C, 1s nearly optimal for the system
This topic of matching cniteria 1n 1dentification
and control design is further elaborated in
Schrama (1992a, b)

Fmnally we remark that identification 1n
closed-loop may be troublesome 1f there 1s noise
present 1n the loop, as 1s practically always the
case If the noise model 1s too simple to
represent the noise, then the deterministic part
of the model cannot be estimated consistently,
see Soderstrom and Stoica (1989) This problem
can be crrcumvented by ‘decoupling’ the
deterministic and noise contribution for instance
by the two-step procedure proposed in Van den
Hof et al (1992)

7 CONCLUSIONS

Based on asymptotic results for prediction
error 1detification a scheme has been developed
to 1dentify a model that gives an optimal
closed-loop description of the controlled system
under investigation The procedure consists of
data collection n operational conditions and
after that the data are filtered properly The
identified model can be used for feedback
design  This 1s carried out 1n an iterative
procedure of identification and controller design
In each iteration step a new model 1s 1dentified,
which 1s then used to design a new controller for
increased performance requirements In an
example the procedure has successfully been
applied to design a high-performance LQG
feedback controller The identification proce-
dure turns out to be superior to straightforward
open-loop identification This anses from the
fact that the 1dentification minimizes a criterion
that 1s compatible with the LQG objective
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APPENDIX

A The MIMO case

In this section we will briefly indicate how the optimal
choice of design vanables can be extended to the MIMO
case The defimtions of &, 4 and Ty(q) in the equations (1)
ull (3) remain unchanged The parameter vector 8 1s
calculated as

N—-1
6 =arg m‘:n% Sy £7(t, O)W,e(e, 9), (A1)

t=0

where W, 1s a symmetnic weighting matrix

The asymptotic result (5) holds with straightforward
modifications, see Janssen (1988, ch 2) There we also find
the frequency domain interpretation

* = arg min ) tr {(H;T(e "YW, H; (e")
o J_, f
T, 0)®(@)TT (e, 0)} dw, (A 2)

with (g, 6) and ®(w) defined by the equations (7) and (8)
respectively The design vanables are defined by

D = {D,(0), P.(@), Wi}, (A3)

Next we consider Fig 1 representing the operational
conditions of the controller The output y 1s given by

F(0) = [ + Go(@)Co(g)] ' G q)C1(g)F(?)
+[1+ Ge)CAP) ™' Hylq)e(®) (A4)

Analogously to the SISO case we define the performance
criterion as

1@ = o (WGl 1040)GL ™)

+ Hey (e )PA0)HL (e7))} do,  (A5)
where
Ger(@) =11+ Glq, 6)Cx(@))'G(g, H)C\(9)
— {1+ Gy(q)Cx(q))” 'Go(q)C,(q), (A6)
Hei(q) =11+ G(q, H)Cxq)] 'H,(q)
-1+ G(,(q)Cz(q)]_lH(,(q) (A7)

W, 1s a symmetric weighting matrix, that should reflect the
relative importance of each component in the performance
cnterion  The following proposition gives an alternative
expression for this performance criterion

Proposition A 1 The performance criterion J (9) satisfies
J.(9)=f tr{ll+G(e ™", 8(D)CLe™" )T
X Wyl + G(e', 6(2))Cofe' )]
x T(e', H(2)P(w)TT (™', 6(2))} dw, (A 8)
where the signal (¢) 1s according to Fig 1 gtven by
(1) = {1+ Coq)Go(@)]™'C:(a)F (1)
— 1+ CAq)GHP 'CAq)Ho(q)e(t), (A 9)
and the matnx ®(w) 1s defined by equation (14)
Proof See Appendix B O

Now we define the general scalar performance criterion J;

for the MIMO case as

16@)= [ (E@e", 8(@)

x T(0)TT (e, 8(D)) dw, (A 10)

where ['(w) and [(w) are Hermitian weighting matrices We
partition I'(w) nto four blocks matching the block structure
in T(q, 8), see equation (3),

I(w) rlz(w)]
[y (@) Tp(w)

We now formulate the MIMO analogon of Theorem 4 1

I(w) = [ (A1)

Theorem A 2 The optimal choice of design vanables (18) 1s
given by

H; (e W, opHf () = ¢, T(w),
(bu upl(w) = Czrn(w)v q)ue opt(w) = 02rl2(a))!

where ¢, and c, are arbitrary positive constants

(A 12)

Proof Follows from the application of Lemma 13 1 1n Ljung
(1987) to the equations (A 2) and (A 10) As both I'(w) and
®(w) are Hermitian, a third constramnt, namely on @, (@) 1s
superfluous Also no constraint on @, 1n relation to I'y,(w) 1s
required because 1ts contribution to the identification
criterion (38) 1s independent of & and does therefore not
influence the minmizing value 6* Finally the constant
scaling factors ¢, and c¢, do not affect the optimality
property O

Analogous to the SISO case an auxihary quadratic
performance cniterion J, can be mntroduced, yielding the
values for I' and I’

I{w) = ®(w),
(@) =11+ Gple™“)Coe™ )"
X W2[1 + G[(elrnn)cz(el(u)]—l

(A 13)

The discrepancies é,(w) and 8,(w) have an obvious MIMO
analogon, that will not be given here explicitly Finally we
are able to formulate the optimal choice of design vanables
in a Theorem

Theorem A 3 If a fixed noise model H,(q) =1+ G,(q)Cx(q)
1s used in the prediction error identification and if the
number of samples tends to imfimty the choice of design
variables
<pu opt(w) = q)ﬁ(w)
@2 opt = q)ue op((w) = q)ﬁi(w)'
Wl opt = W2

(A 14)

1s arbitranly close to the optimal solution 9, ,,, provided
é,(w) and 8,(w) are sufficiently small, 1 e
L TPy ) (B o) =0 (A1)

Proof Follows from Theorem A 2, following the steps of
the proof of Theorem 42 [0

This means that again data collection should take place
under operational conditions in order that a model 1s
1dentified that gives an optimal closed-loop description of the
system The fixed nosie model Hy(q) = [I + G;(q)C,(q)] can
be realized by prefiltering the prediction error &(t, ) with
the filter L(q) = [/ + G,(g)C4(¢g))"' 1n combmation with an
output error identification scheme Note that in the MIMO
case this 1s not equivalent to filtering the input/output data
with this filter

B Proof of Proposiions 3 1 and A 1

In this appendix we give a proof for Proposition A1 As
Proposition 3 1 1s a special case of Proposition A 1 this 1s at
the same time a proof for Proposition 31 For ease of
notation we will not always exphcitly mention dependency of
a_quantity on q or ¢ and we will use the short-hand notation
G and H for G(q, 6) and H,(q) respectively



690 R G HAKVOORT et al

Proof Define the auxihary signal y(¢) as
7O = (1 + G(@)CAP] ' G@)Ci(q)
— [+ Gy(@)C29)]™ ' Go@)C1(@))F())
+([1+G@)CA)] 'Alg)
= [1+ G@)CoA)] ™" Ho(q))e(r) (A 16)
Then as the signals 7 and & are uncorrelated the performance
criterion J,(2) 1s obviously equal to

1(@)= f tr (W)} dw (A17)

Now the auxihary signal 7(¢) can be written as
F@) = (U + GGyl 'G = [+ GyC,)'Gy)C 7
+ ([ + GGy ' H ~ [I + G,C,) ' Hp)e

=[14 GG " ((G ~ [ + GCIG[1 + C,Go]~")C\F

+ (ﬂ - [l + GCZ][I + G()CzrlHo)é}
=[1+ GG, {(G[I + C,G,) - [1 + GC,)Gy)

X [1 + C,G,o) ' C 7 + (H — Hy)e

+ ([l + Goczl - [l + GCz])[l + Guczr ]Hué}
=[1+ GG, (G - Gl + C,G)]'C,F

+(H ~ Hy)e — (G — G))C,lI + GyCy] ™' Hye}
=1+ GC,] (G - G + C,Gol'C\7

- [1 + CZG()]AICZHOE) + (I:I - Hu)é}
=[1+GCy]"'(G — Gy + (H — Hy)e]

-1+ 6. HC@) T, 5],

o (A 18)

with the signal i(t) given by (A 9) Consequently (A 17) and
(A 18) yield the desired result O



