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Approximate Identification with Closed-loop 
Performance Criterion and Application to LQG 

Feedback Design* 

RICHARD G H A K V O O R T , t  R U U D  J P SCHRAMA~t and P A U L  M J 

VAN DEN H O F t  

An iterative approach of identtfication wtth properly filtered signals and 
control destgn appears to yield a nominal model that is better sutted for 
feedback destgn than a model resulting from an unwetghted open-loop 
tdenuficauon. 
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t t e ra t tve  m e t h o d s  

Alam, act- -A model-based controller generally works better 
w3th the model than vath the modelled plant due to the 
modelhng error This dtfference between the performances 
can be made small by selecting a model that ts accurate at the 
closed-loop relevant frequenoes In thts paper tt ts shown 
that an tteraUve approach of tdenttficatmn and control design 
can lead to a model that ts much better stated for feedback 
design than a model resulting from an unwetghted open-loop 
tdenttficatton In this iteration each ldenUficatlon is 
performed such that a certam closed-loop cntenon funcUon 
is nummtzed This ts accomphshed by closed-loop identifica- 
tion wtth persistent set-point excttatmn and a proper stgnal 
filtering Each control de,ugh step employs the latest 
tdenttfied model to construct an I X ~  compensator The 
performance requn'ements are gradually mcreased during the 
i t e r a t i o n  

1 INTRODUCTION 

THE DESmN OF a hnear control system is 
frequently based on a model of the plant under 
consideration A model is very unhkely to be an 
exact descnpUon of the system. Due to the 
model error the performance of the controller, 
designed for the model, wdl not be obtained 
when the controller is apphed to the real system 
Obviously, m order to have a controlled system 
performance that ts close to the designed 
performance for the model, the model error 
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should be tuned towards the control objective. 
The need for a htgh accuracy near the cross-over 
frequency ts well recogmzed This ts however 
only a parUal answer to the problem. In its 
generahty the quesUon is how to properly define 
a closed-loop relevant way of evaluatmg the 
model error. 

When the model is obtained from identlfica- 
Uon experiments, the problem above bolls down 
to the problem of findmg a closed-loop relevant 
identificatton critenon Several authors have 
pard attentton to thts problem An ad hoc 
solution ts obtamed m Balas and Doyle (1990), 
which addresses a control problem with a 
prespeofied bandwidth. In Gevers and Ljung 
(1986) experiment design for mmlmum variance 
control IS studted in the predtctlon error 
identification framework The closed-loop of the 
model-based controller is compared wtth the 
closed-loop of the opUmal, system-based, con- 
troller The difference of the resultmg two 
closed-loops is shown to be mmimlzed by an 
opUmal ldenuficatton expenment In Rivera et 
al (1990) the predictton error method IS apphed 
as well, but there a destred sensltwtty is used as 
a welghtmg function for open-loop tdentlfiCatlon 

In this paper we wdl not use desired feedback 
transfer function matrices, nor will we use 
knowledge of a plant-based controller Instead 
we take the followmg startmg pomt In order to 
identify a model that ts statable for control 
design, we should be able to identify a model 
that accurately describes the closed-loop relevant 
system properties In the presence of a given 
compensator The main problem considered in 
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this paper IS how to perform an identification 
experiment such that the resulting model m 
closed-loop optimally resembles the system m 
closed-loop for a give compensator If such a 
model has been identified, it can subsequently be 
used to design a new compensator with slightly 
increased performance requirements, which in 
this paper correspond to a higher bandwidth of a 
servo-controller The rationale ~s that the model 
will stdl be a good representation of the plant for 
a new compensator, provided that this new 
compensator d~ffers not too much from the 
prewous one Therefore the performance 
improvement that is achieved for the model is 
expected to be achieved for the modelled 
system as well Next a new identification is 
carried out In order to obtain a model that 
accurately descnbes the system for the new 
compensator, and the entire procedure ~s 
repeated until a satisfactory controller perfor- 
mance is achieved A similar lteratlve approach 
has also been suggested in Zang et al (1991) for 
LQ control design In Schrama (1992a, b) it is 
shown that such an lteratlve scheme of 
identification and controller design is actually 
necessary for high performance control design 

In the light of this lteratlve scheme, we will 
analyze the ~dentlfiCatlon problem mentioned 
above A solution will not only be shown to 
exist, but also to be simply applicable using 
standard identification tools As a control design 
method we wdl use LQG feedback design We 
utilize the prediction error identification method, 
Ljung (1987), and the concept of a performance 
criterion as introduced in Gevers and Ljung 
(1986) We will only consider the asymptotic bias 
contnbutlon to th~s performance criterion, 
variance aspects will not be considered A 
closed-loop performance criterion is defined and 
the design variables of the prediction error 
method are chosen such that this criterion 
function is actually minimized by the identifica- 
tion procedure This makes the identification 
criterion compatible with the LQG control 
objective Using an lteratwe procedure of 
closed-loop relevant identification and control 
design, a model for high-performance control 
design is constructed, that could not have been 
obtained from open-loop experiments alone 

Prehmmary results on this problem have been 
pubhshed in Hakvoort (1990) and more recently 
in Hakvoort et al (1992) The LQG objectwe 
has also been addressed m Bltmead et al (1990), 
but there the ~dent~ficatlon procedure minimizes 
a model error that pertains to robust stabd~ty 
rather than to robust performance 

The outline of the paper IS as follows In the 
next sectmn the pred~ctmn error ~dentlficatlon 

procedure ~s summarized In Section 3 we define 
the closed-loop performance criterion of con- 
cern In Section 4 we adjust the prediction error 
method such that this criterion function ~s 
actually minimized Then in Section 5 we 
consider an example in which the lteratlve 
scheme is put into practice for a particular LQG 
control objective In Section 6 we discuss the 
results and we make some general observations 
concerning the interplay between ldentlficatmn 
and control design The paper ends with a 
summary and conclusmns 

2 PREDICTION ERROR IDENTIFICATION 

In this section we adopt the relevant aspects of 
prediction error identification from Ljung 
(1987) 

Consider a dlscrete-t~me representation of a 
linear, tlme-lnvanant SISO system with additive 
stochastic disturbances 

5 ¢ y(t) = Go(q)u(t) + o(t) 

= Go(q)u(t) + Ho(q)e(t), (1) 

where Go(q) is the deterministic and Ho(q) the 
stochastic part of the plant, u(t) and y(t) are 
respectively the input and output at time t and 
e(t) is discrete white noise with zero mean value, 
q is the shift operator q u ( t ) = u ( t + l )  The 
leading coefficient of Ho(q) is one 

We choose a model set with a fixed noise 
model, 

y(t) = G(q, O)u(t) + l~l/(q)e(t), (2) 

where e(t) is the one step ahead prediction 
error G(q, O) and lOll(q) are defined analogo- 
usly to Go(q) and Ho(q) The leading coetticlent 
of I:I/(q) IS one We do not assume that the true 
system 5¢ IS in the model set M For notational 
convenience we introduce 

T0(q) = [G0(q) Ho(q)l, 
(3) 

T(q, O)= IG(q, O) 
An estimate of 0 is obtained by mlmmlzmg the 
quadratic norm of the prediction error with 
respect to 0 

1N--I 
/) = arg morn ~ ~ e2(t, 0), (4) 

t = 0  

with N the number of samples This yields the 
estimate T(q, O) 

In Ljung (1987) it is shown that under weak 
conditions the asymptotic parameter estimate is 
gwen by 

hm 0 = 0 * = a r g m l n E e 2 ( t ,  0) w p  1 (5) 
N - - * ~  0 

According to Janssen (1988) this can be given 
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the frequency domain interpretation 

f ( e  ,~', O)¢(o)) tr  (e -''o, 
0* = arg mm f=  

0) 

0 J - ~  
do) ,  

(6) 

where 7" ms the model error defined as 

7"(q, O) = T(q, o) - To(q) (7) 

and ~(o)) is the spectrum 

[ *o(o)) ¢o,(o))l 
(1)(o)) = Lt},.(o)) (}.(o)) J '  (8) 

with (}.(o)) the spectrum of u(t) and (}..(o)) the 
cross-spectrum of u(t) and e(t) This result (6) 
also holds under closed-loop condmons In that 
case a necessary requirement ms that either the 
controller or the model G(q, O) and the system 
Go(q) have one delay, see Janssen (1988) 

The input spectrum (}.(o)) and the cross- 
spectrum (}..(o)) dictate the frequency distribu- 
tion of the model error (see Wahlberg and 
Ljung, 1986, for details) As these design 
variables are at our disposal, we can choose 
them such that the model ms optimal m view of 
the intended use We signify the design variables 
as  

= ((}.(eo), ¢. .(o))} (9) 

The spectrum (}.(o)) can be specified by an 
open-loop input design, but a nonzero (}.~(o)) 
can be realized only by introducing feedback in 
the identification and specifying some external 
reference signal Of course one cannot assign 
(I)¢(o)) as this would be in contradiction with the 
nature of a noise 

3 A CLOSED-LOOP PERFORMANCE CRITERION 

In this section we will define a closed-loop 
performance criterion to measure the model's 
capacity to describe the controlled operation of 
the plant We will define the criterion function 
for a given controller, lrrespectwe of the applied 
control design technique At a later stage this 
controller will be determined by means of LQG 
feedback design 

We consider the closed-loop configuration of 
Fig. 1, in which the plant is controlled by the 
fixed two-component controller (Ct, C2) which ms 
assumed to be known The feedback system is 
driven by an external disturbance 0 and an 
external reference signal f, which are assumed to 
be mutually uncorrelated The bars represent the 
operational conditions under which the model 
must appropriately describe the plant Hence 
and ~ are signals with fixed spectra determined 
by the operational conditions 

@. 
FIG 1 System m closed-loop 

The output )7 satisfies 

Go(q)C,(q) Ho(q) 
.~(t) = 1 + Go(q)Cz(q) P(t) + 1 + Go(q)C2(q) ~(t) 

(10) 

A similar equation can be written down for the 
model by replacing Go(q) and Ho(q) with 
G(q, O) and Hf(q) The model is a good closed- 
loop description of the system if the error terms 

G(q, O)C,(q) Go(q)Cl(q) 
1 + G(q,/))CE(q) 1 + Go(q)CE(q) 

and 

IEl/ ( q ) Ho( q ) 
1+ G(q, /))CE(q) 1 + Go(q)CE(q)' 

are small m an HE-sense We define a 
closed-loop performance criterion Jl(fl~) as the 
2-norm of these error terms weighted with the 
signal spectra, 

/:( = a ( e ' ' ,  

# 1 + G(e' ' ,  0(~))CE(e ' ' )  

Go(e,.,)C,(e.O) 2 ¢P,-(O)) 
1 + Go(e"°)C2(e "°) 

I ,O/(e TM) 
+ 

I1 + G(e TM, ()(fl~))C2(e '°') 

Ho(e' ~) 2 

1 + G E(e 
do), (11) 

where the argument ~ has been added to 
emphasize the dependency of the identification 
result on the design variables Note that, due to 
the presence of the term /-)//(1 + (~CE) m the 
criterion (11), this criterion function is different 
from the one used m Zang et al (1991) Also 
note that this criterion has been formulated for 
fixed ~ and ~ We will not directly address the 
problem of deslgmng an optimal ~ ,  I e we wall 
not optimize the criterion function (11) over ~ ,  
but assume ~ (and ~ )  to be determined by the 
operational conditions of the plant The criterion 
function (11) is small if the closed-loop of the 
model is close to the closed-loop of the system m 
respect to the spectra of the signals f and ~ that 

AUTO 30 4-I 
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drive the feedback system The following 
proposmon gwes a useful alternative expression 
for J~(~) 

Proposmon 3 1 The performance cntenon 
J l (~)  satisfies 

Y ' ( ~ )  = ~ I1 + G(e '°', / )(~))C2(e"°)[  2 

x T(e ''°, 0(~))4~(O))7"~r(e - '° ' , /}(~)) dO), 

(12) 

where T(q, 0) is given by equation (7), and 
according to Fig 1 the signal ti(t) saUsfies 

Ct(q) Ho(q)C2(q) 
a(t)  = e(t) e(t)  

1 + Go(q)C2(q) 1 + Go(q)C2(q) 

and ~(O)) satisfies (13) 

~(O)) = [ tb,~(O)) ¢}u(O))l (14) 
L(I)~.~(O)) ¢bdO) ) J 

Proof. See Appendix B [] 

We want to formulate an ldenUficatton 
procedure such that this performance criterion 
J l (~)  is minimized More precisely the objective 
is to determine the opUmal design variables 

~t  opt = arg m ln J~(~) (15) 

According to (9) these design vanables consist of 
Ou(o)) and *.~(o)), the signal spectra dunng 
idenUfieatlon Once more It Is emphasized that 
these spectra correspond to the identification 
stage, and are free to choose, they are destgn 
vanables This is m contrast with the spectra 
Oa(O)) and ¢bu(O)), which are fixed as they are 
determined by the operational conditions of the 
plant If the identification is earned out 
according to the optimal choice of design 
vanables, then the resulting model is an optimal 
closed-loop description of the system. Note that 
this optimal design ~i.opt possibly is a function of 
the chosen controller (C1, (72) as the criterion 
function (11) Is a function of this controller. 

4 OPTIMAL IDENTIFICATION STRATEGY 

In this section we will denve the optimal 
choice of design variables such that the 
dosed-loop performance crltenon J l (~)  defined 
m (11) is mmmuzed First we recapitulate some 
theory presented m Gevers and Llung (1986), 
where the general scalar criterion J c ( ~ ) ,  

Jc(~)  = ''°, 
~r 

x i"r(e -''°, /)(~))do),  (16) 

has been introduced as a measure for the model 
quality In here F(O)) is a 2 x 2  Hermman 
weighting matrix that describes the relative 
importance of a good fit at different frequencies 
depending on the intended use of the model 

For the number of samples increasing to 
infinity, it Is shown m Gevers and Ljung (1986) 
that 

hm Jc,(~) = JB(~) 
N----*oo 

// = 7~(e '°', 0*(~))F(O)) 
st 

x f'r(e-'°', 0"(~) )  dO) w p 1, 

(17) 

where Ja is a bias-contnbutlon to the perfor- 
mance cntenon Jc,. We consider the optimiza- 
tion problem 

~opt = arg hm JB(~) (18) 

In Gevers and Ljung (1986) this optimization 
problem has been solved by matching the 
cntenon functmn (17) to the cntenon that is 
minimized m the ldentificaUon procedure (6). In 
this way it is achmved that the idenUficatlon (6) 
actually performs the desn'ed mlnlmtzaUon (17) 
The formal result Is given in the next Theorem 

Theorem 4 1 (Gevers and Llung, 1986) The 
optimal chome of design variables (18) is gwen 
by 

* u , o r , ( O ) ) _  ~ "to" 
i~f(e,.,)l 2 - e l , , ( ) ,  

(1)ue °Pt(O)) c F , 2 ( O ) ) ,  
i/~f (e,~)l 2 = 

(19) 

where F, I is the tth row, / th  column entry of F 
and c is an arbitrary positive constant. 

We intend to apply this result to the mtuatlon 
of the performance cntenon (12) This can 
however not be done straightforwardly The 
reason is that the cntenon function JG in (16) is 
quadratic m the model error, while Jm ms not a 
quadratic cntenon function as the corresponding 
weight F(o)) would depend on G(q, 0 ( ~ ) )  We 
proceed by first introducing the auxiliary 
quadratm performance cntenon ./2 as 

f.- 1 
J2(~) = -,~ l1 + ~,;(e'~)C2(e'~)12 

x i~(e'% O(e))~,(o))¢~(e-'% 0(~))do,, 
(20) 

where (~I is some fixed model This criterion 
function is quadratic in the model error, with the 
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(constant) wetghting matrix r(o))  given by 

,i,(0~) 
r(o))  = l1 + ¢~1(e'O')C2(e'°')l 2 (21) 

So Theorem 4.1 can be straightforwardly applied 
to find 

~2.op, = arg mln J2(~),  (22) 

which is for c = 1 given by 

" ~a(o))  I/-)f (e"°) 12 
q~.,opt(o)) - I 1  + df(e' ')C2(e' ')l  2 

~2,opt----- (l)a~(o)) i~r(e,O,)12 

q),,,,opt(O)) = l1 + (~¢(e'°')C2(e'°')12 

Next we define the discrepancies 6t(O)) 
62((D ) as 

1 
61(o)) 

l1 + C'#(e"°)C2(e'°')l 2 
1 

l1 + G(e'',  O(fl~ opt))C2(e")l 2' 

1 
62(  o) ) = 

l1 + G(e TM, O(~2.opt))C2(e'° ') l  2 

1 
I1 + ~1(e'')C2(e'')l 2' 

which are of use |n the next Theorem 

(23) 

and 

(24) 

(25) 

Theorem 4.2 Consider the performance cn- 
tenon defined by (11) If a fixed noise model 
l~f(q) = 1 + Gf(q)C2(q) is used In the prediction 
error |dentficatlon and if the number of samples 
tends to mfimty then the choice of  design 
variables 

, f , t , . , op , (o ) )  = ,I , .~(o)) 
~2,opt ~--- [. (i)u e opt(O) ) = (I~fi~(O))' 

(26) 

converges to the opt |mal solut|on ~] opt If 61((-D ) 
and 62(o)) converge to zero, | e 

hm Jt(~2.opt) - J , (~ t  opt) = 0 (27) 
6t 62--*0 

Proof If the fixed noise model satisfies/~f(q) = 
1 + ~f(q)C2(q) then the design (26) IS identical 
to the opt |mal design (23). Th|s optimal solution 
has of course the property that J2(~2.opt)- < 
J2(~t.opt) Us|ng this and Proposition 3 1 we 
obtain 

Jl (~2.opt)  -- J1 (,-~l,opt) 
= (J,(~2,op,) - J~ (~2 .o~ ) )  

+ (S2(~2.opt) -- J2(~ l ,opt ) )  

+ (J2(~l,opt) - -  JI(~l ,opt))  

(J] (~2.opt) - J2(~2.opt)) 

+ (J2(~l,opt) - J l (~ ' .op t ) )  

,~ I1 + G(e'°', 0(fl~2.op0)C2(e,,O)12 

1 
I1 + Gf(e';)C2(e'')l 2] 

× f(e% 0(~e.op,))4'(o)) 
× TT(e-'°', 0(~e.opt)) do) 

f (  1 
+ -n  [1 + Cf(e'°J)C2(e'°)12 

1 

l1 + G(e'% b(~T.T~l.opt))C2(e'°')12] 
x f(e'% 0(~, op,))o(o)) 
x Tr(e-'', 0(~Lopt)) do) 

I7 = 62( to )T(e  'w, 0(~2.opt)) 

x ~(o))Tr(e-'% 0(~2,op,)) do) 

I/ + 6,(o))i"(e'", 0(~Lo,,,)) 

X ~((19)TT(e -Ira, O(~l.opt)) do)--* 0 

if 6 , ( o ) ) - - ,  0,  6 2 ( 0 ) - - , 0 .  (28) 
[] 

This means that the choice of  the design 
vanables (26) generally is a good choice, and it 1s 
even the best possible design (in a quadratic 
error sense) if both 61 and 6 2 vanish From 
equation (25) It follows that 6 2 |S small |f (~f(q) 
is close to G(q, 0(~2.opt)), which is the result of 
the identification conducted according to 
Theorem 4 2; more spec|fically, the correspond- 
mg senslt|v|ty functions have to be similar Th|s 
discrepancy 62 can be calculated afterwards 
Moreover  it can be reduced to an arbltranly 
small value by an | terat |ve procedure In each 
step of this |teratlon G1(q) |s chosen as the 
|dentlfiCatlon result of the prev|ous step Th|s 
means that the fixed noise model Hf(q)= 
1 + Gf(q)C2(q) |s determmed |teratlvely, |n an 
|nner-loop | terat |on that |s mdependent  of the 
| terat |on of |dent|ficat|on and control des|gn 
outhned |n the lntroduct|on In th|s inner-loop 
iteration an opt|real nommal model is |dent|fled 
for a fixed controller Based on the estimated 
G(q, 0) a new fixed noise model is constructed 
and a new model G(q, 0) ms estimated with this 
new fixed no|se model,  based on one and the 
same data set Wahlberg and Ljung (1986) have 
shown that prefiltenng the data u(t) and y(t)  
w|th a stable linear filter L(q) |s equ|valent to 
changing the no|se model /~f (q)  to ftf(q)L-~(q) 
Hence the cho|ce of a fixed no|se model ftf(q) = 
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Collectmg data rn 
operatmml condhons 

1 t'Jlt) = G(%@‘J(t) + kJi,('ddt) 1 
I I 

FIG 2 Optimal ldentlticatlon strategy 

1+ Gw2q) may m practice be reahzed 
by applymg a filter L(q) = (1 + &q)&(q))-’ 
m combmatlon with output error ldenttficatlon 
(noise model 1s fixed to one) 

From equation (24) It follows that 6, 1s small If 
t?,(q) IS close to the (unknown) optimal 
ldentlficatlon result G(q, &91,0p,)) This da- 
crepancy S, cannot be determined precisely, but 
it IS small d for example the modelhng error 1s 
made sufficiently small, i e If both 

G(q, &q.,l)) and G(q, &S,,,J) (or equlv- 
alently Gf(q)) are close to the real system 
G,(q) If 6, or a2 are not zero (which may often 
happen m practice) then Bdz opt 1s m general not 

equal to %.opt In that case the design (26) 1s 
not optimal any more, but because of contmulty 
conslderatlons -it 1s still expected to 
good design 

be a very 

The optimal ldentlficatlon strategy derived 1s 

vlsuahzed m Fig 2 It says that the Input 
spectrum (and the cross-spectrum of noise and 
input) m the ldentlficatlon experiment should be 
the same as those m the operational condltlons 
(Fig l), which means ldentlficatlon rn closed- 
loop The data collected under operatlonal 
condltlons have to be properly filtered m order 
to obtain the optimal model The Interpretation 
of the optimal ldentlficatlon IS that It includes a 
weight at those frequencies where the 
closed-loop of the plant 1s close to the stability 
margin (fi contains much energy) and/or where 
the closed-loop of the model 1s close to the 
stability margin (L(q) has a large gain) We 
notice that m the ldentlficatlon procedure no 
perfect knowledge of the true system F;,(q) IS 
required, which 1s a very attractive property It 1s 
mentioned that m practice the ldentlficatlon 
procedure will only work if ldentlfiablhty 1s 
ensured by using a persistent exciting external 
reference signal i In Appendix A the result of 
the optimal ldentlficatlon strategy 1s extended to 
the MIMO case 

As clanfied m the mtroductlon this optimal 
ldentlficatlon strategy, derived for a given 
controller (C,, C,), can be combined with an 
iterative scheme of ldentlficatlon and controller 
desgm m order to arrive at a high-performing 
controller This iterative scheme 1s visualized m 
Fig 3 As explained the iteration may contain 
subiterations at the moment that an optimal 
model 1s identified as the prefilter 1s dependent 
on the (unknown) ldentlficatlon result G(q, 4) 
So the inner-loop iteration m Fig 3 corresponds 
to the iterative prefilter (or fixed noise model) 
design, for which no new measurements are 
needed The outer-loop iteration involves the 
lmplementatlon of a new controller and collect- 
mg new data 

. 
Expenmental data of pltit Go 

controlled by c’-’ 

a =a+1 
A 

. 

. I 
Optimal identification Iterative prefiltet design 

strategy L=& 

61 t 

. 

Control Design 
I 

C’ 

FIG 3 Iteratwe scheme of ldentlficatlon and control design, I = 1, 2, 3, , c” = 0 
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5 APPLICATION TO LQG FEEDBACK DESIGN 

The theory of the previous sectmns has been 
developed wtthout making assumpttons about a 
specific controller design method. In the 
example of this sectmn we will employ one 
particular controller design procedure, vlz LQG 
feedback design, m order to illustrate the 
presented identification procedure We shortly 
summanze the relevant topics For a more 
detailed dtscussion the reader ts referred to, for 
example, Mactejowski (1989, ch 5) 

Consider the discrete ttme SISO model d / f o r  
which a controller has to be destgned 

[x(t + 1) = Ax(t) + Bum(t) + Fw(t) (29) 
3/ Lyre(t) Cx(t)+ V(t) 

where w and v are zero-mean white noises with 
covarlance matrices 

E{ww r}=W>O, E{vv r}=V>O, 
(30) 

E{wv r} = 0 

The signal Um lS the control signal to the model 
and Ym lS the output of the model Now the LQG 
problem is to devise a feedback control law 
which mlmmizes the cost functton 

JLOG = hm E ~ (xrQx + uTRUm) , (31) 
N-'~°° t=O 

with Q a posmve semi-defimte wetghtmg matnx 
and R a posttive defimte we~ghtmg matrix. 

There are several weightmg matrices that we 
can freely choose We want to investigate the 
impact of the identification procedure on the 
quality of the resultmg controller and not the 
impact of the design weight. Therefore we 
pragmatically fix the weighting matrices, 

F=B, W=I, V=c, Q = C r C ,  R=c 

(32) 
Then the LQG cntenon function becomes 

c l N-It=l } 
JLOO = hm Et~ I ~ (y~(t)+cu~(t)) (33) 

N - - - - ,  ~ _ ) 

and ,t tmphes that the white norse w ~s assumed 
to be additive at the input Um The latter is 
equivalent to stating that a wh,te norse external 
reference signal r enters at the mput Thts 
actually determines the operational condmons m 
the Figs 1 and 2, ne Ct(q)=l and f t s  white 
n o i s e  

The parameter c is the only design variable 
that is left and we wall use ~t to establish the 
performance requirements on the controller A 
relattvely small value of c gives less weight to Um 
m the criterion funcUon, and the output is 
assumed to be disturbed less, whtch gtves rtse to 

a tighter feedback-loop This will generally also 
lead to less robustness, even though no LQG 
controller optim~zes robustness at all. 

Now we apply the optimal identification 
procedure derived in the previous sections in 
combmatton wtth this fixed controller design 
procedure, perfonmng an Reratton of identifica- 
tion and feedback design. We use low order 
models m order to emphasize the effects due to 
undermodelhng and use 4000 samples In the 
ldenttficatmn such that the variance effects can 
be neglected We compare the outcome of the 
lteratmn wRh the result of a d~rect open-loop 
ldentlficatmn The slmulatmn example is car ted 
out in continuous time due to the avallabthty of 
software to design continuous time LQG 
controllers Th~s means that the discrete t~me 
models that result from the ~dentlficatmn are 
transformed to continuous ttme, assuming zero 
order hold. The error mtroduced by this 
transformatmn is very small as the samphng rate 
has been chosen high 

We constder the fifth-order system shown in 
Fig. 4 Open-loop measurements are carried out 
wtth a white no~se input signal and about 7% 
coloured no~se being added to the output. Also 
m Fig. 4 the result of the open-loop idenufica- 
tmn of a strictly proper third-order output error 
model is gwen The low-frequency fit appears to 
be very good Next we destgn an LQG controller 
for the model, choosing c = 0 0002 In Fig 5 the 
Bode dtagram of this controller is shown In 

10 2 . . . . . . . . . . . . . . . .  : 

10 - l  

10-4 
10 o 

i , , , , I , , i  i i i i i l l  
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0 

- 5 0 0  . . . . . . . . . . . . . . . . .  
I0 o 101 10 ~ 

f r e q u e n c y  

Flo 4 Bode diagram fifth-order system (sohd) and 
third-order output-error model (dashed) obtained from 

open-loop cxpenments 
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FIG 5 Bode diagram controller designed for the model 
identified m open-loop with c = 0 0002 

5 

-1C  
-5 0 5 10 

real 

FIG 6 Nyqmst dlagram of CC (dashed) and GoC (sohd), 
where G is the model identified in open-loop and C m the 
LOG controler designed for this open-loop model with 

c---0 0002, the * denotes the point -I 

Fig 6 the Nyqmst diagram of controller times 
model and controller times system is given, 
clearly mdlcatlng the model error near the 
critical point -1  In Fig 7 the Bode plot is 
presented of the resulting closed-loops of the 
controller implemented on the model and on the 
system It turns out that the controller 
destabilizes the system W Apparently the model 
identified in open-loop does not describe the 
relevant closed-loop properties of the system 
sufficiently well 

We now want to identify a third-order model 
that gives an optimal closed-loop description of 
the system, using the identification scheme of 
Fig 2 We do this in an iteration of identification 
and feedback design as shown in Fig. 3 First we 
design a low-performance controller (c = 0.0008) 
for the model identified in open-loop Then 

100 

10 -1 

,.¢- lO -e  

1 0 - 3  

10-4. 
10 o 

, F i f f , m .  

\ 
i t i i i l l l l  

101 
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,~ - 2 0 0  

- 3 0 0  

- 4 0 0  . . . . . . . . . . . . . . . . .  
100 101 102 

f r e q u e n c y  

FIo 7 Bode diagram closed-loops G/(1 + GC) (dashed) 
and Go/(1 + GoC), where G is the model idenufled m 
open-loop and C is the LOG controller designed for this 

open-loop model with c = 0 0002 

closed-loop measurements are performed with a 
white noise external reference signal and again 
about 7% coloured additive output noise Using 
these measurements an output error model is 
identified applymg a proper prefilter which is 
calculated using the designed controller and the 
open-loop identification result Next we design a 
new controller for the resulting model with 
increasing performance requirement (c = 
0 0004) Then we conduct a new identification 
a n d  w e  d e s i g n  a c o n t r o l l e r  w i t h  c = 0 0 0 0 2  W e  

repeat this last step till there ms no significant 
change in controller or model 

Altogether four iterations were sufficient to 
reach the final result Bode plots of the resulting 
controllers are shown m Fig 8, which displays 
the increasing control action Figure 9 reveals 
that the resulting optimal model has a poor 
open-loop fit The closed-loops of the final 
controller implemented on the optimal model 
(designed loop) and on the system are depicted 
in Fig 10 The controller designed for the 
optimal model gives a satisfactory, stable 
performance for the system We remark that the 
optimal model has a bad open-loop behaviour, 
but It is nevertheless more suited for feedback 
design than the model identified in open-loop 

6 DISCUSSION 

In the example of the previous section It has 
been shown that for LQG controller design the 
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FIO 8 Bode diagram LQG controllers determined in an 
Iterat,ve way for c = 0 0008 (sohd), c = 0 004 (dashed) and 

c = 0 0002 (dash-dotted, dotted) 
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FIo I0 Bode diagram closed-loops (~/(I + (~C) (dashed) 
and Go/(l + GoC), where G is the optlmal model and C is 
the LQG controller demgned for this optimal model with 

c = 0  0002 
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FIO 9 Bode diagram system (sohd) and thlrd-order optlmal 
model (dashed) 

optimal ldenUficatlon strategy of Fig. 2 m 
combination with the lteratlve scheme of F~g 3 
yields a model that is superior to a model 
obtained by a simple open-loop identification 
Th~s means that a combined ~terative approach 
of ldentificaUon and controller design can lead to 
results that are better than those obtained from 
open-loop considerations alone It is true that 

the open-loop ldenUficatlon was inappropriately 
weighted, but the point ts that the optimal 
wetghtmg ~s not known beforehand and needs to 
be determined lterat~vely The ~teratlve aspect is 
essential, because a model is needed for 
controller design and knowledge of the control- 
ler is needed m order to ~denUfy a good model 

The mot~vatmn for the apphed ~terat~ve 
approach ~s, as already has been argued, that a 
model opUmal for a certain controller wdl be 
close to opt~mahty for a shghtly d~fferent 
controller This explains why the procedure 
converged m the example of the previous 
section However ~t also means that the 
procedure might very well diverge if m each 
lteraUon the performance reqmrement is In- 
creased too much For m that case opUmahty ~s 
completely lost for the new controller Presently 
mt ~s unknown under what condmons conver- 
gence can be guaranteed In the example of the 
prewous section the controller update has s~mply 
been carried out by trial and error However 
also m the case that the performance reqmre- 
ments are increased slowly, there ~s a hmlt on 
the achievable performance This hmlt Is 
determined by the reqmred controller robust- 
ness The controller always has to be robust m 
the sense that 1t has to stabdtze both the model 
and the system In the example in the prewous 
secUon th~s means that the value of c cannot be 
decreased arbRrardy, as at some moment the 
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controller is not robust enough and it will 
destabilize the system 

The results of this paper, based on an 
asymptotic bias analysis, can also be considered 
as a justification of other lteratlve schemes such 
as the one presented in Zang et al (1991) There 
a different closed-loop performance criterion is 
used, as the noise is treated differently, and 
moreover the controller design criterion is 
strongly connected to the identification result 
and always based on an LQ objective In our 
approach the controller design ms basically 
completely free to choose, in the example in the 
previous section only a choice has been made for 
LQG design with a very simple choice for the 
weighting matrices 

We now take a closer look at the criteria that 
are minimized in the identification and the 
controller design procedure In the L Q G  
controller design procedure the quadratic cri- 
terion JLo6 in (33) IS minimized For a high 
performance controller (c = 0 0002 for example) 
the contribution of ~ y 2 ( t )  dominates this 
criterion function The external reference signal 
is white noise so that the L Q G  controller design 
procedure actually (approximately) minimizes 

JLOG((~) = I1(~(1 + C2(~)-1112 (34) 

In the identification procedure the quadratic 
cnterion Jl in (11) is minimized As the external 
reference during identification is white noise, 
this means that the identification procedure 
minimizes 

J, = Ilao(l + c2ao )  -I - G ( I  + c2t~)-'ll=, (35) 

where we neglected the contnbutlon of the 
noise Using the tnangle mnequahty we obtam 

JLoG(Go) = IIGo(1 + C2G0)-'112 

-< JLOC(O) + J,, (36) 

which means that the criterion value JLoo(G0) ms 
bounded Moreover,  if the model is a good 
descnptlon of the system, JLoo(Go) will be close 
to JLO6((~), which Implies that in that case the 
controller C2 is nearly optimal for the system 
This topic of matching criteria in ldentmfication 
and control design IS further elaborated in 
Schrama (1992a, b) 

Finally we remark that identification in 
closed-loop may be troublesome if there is noise 
present in the loop, as is practically always the 
case If  the noise model is too simple to 
represent the noise, then the deterministic part 
of the model cannot be estimated consistently, 
see Soderstrom and Stolca (1989) This problem 
can be circumvented by 'decouphng '  the 
deterministic and noise contribution for instance 
by the two-step procedure proposed in Van den 
Hof  et al (1992) 

7 CONCLUSIONS 

Based on asymptotic results for prediction 
error idetIfiCatlon a scheme has been developed 
to identify a model that gmves an optimal 
closed-loop description of the controlled system 
under investigation The procedure consists of 
data collection m operational conditions and 
after that the data are filtered properly The 
identified model can be used for feedback 
design This is carried out in an mteratlve 
procedure of identification and controller design 
In each mteratton step a new model is Identified, 
which is then used to design a new controller for 
increased performance requirements In an 
example the procedure has successfully been 
applied to design a high-performance L Q G  
feedback controller The mdentification proce- 
dure turns out to be superior to straightforward 
open-loop Identification This arises from the 
fact that the identification minimizes a criterion 
that IS compatible with the LQG objective 
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APPENDIX 

A The MIMO case 
In this section we will briefly indicate how the optimal 

choice of design variables can be extended to the MIMO 
case The definitions of 5e, ~ and To(q) in the equations (1) 
till (3) remain unchanged The parameter vector 0 is 
calculated as 

N - i  
/ )= argmm I ~.. er(t, O)Wle(t, 0), (A 1) 

t=O 

where W t is a symmetric weighting matrix 
The asymptotic result (5) holds with straightforward 

modifications, see Janssen (1988, ch 2) There we also find 
the frequency domain interpretation 

O" = arg rain f :  tr {tCl/r(e-'O')Wil=l;'(e '0") 
0 -/-~t 

]'(e ''°, O)*(to)] 'r(e-% 0)} dip, (A 2) 

with T(q, 0) and *( to)  defined by the equations (7) and (8) 
respectively The design variables are defined by 

= {*.( to) ,  *.<(to), W,}, (A 3) 

Next we consider Fig 1 representing the operational 
conditions of the controller The output y is given by 

y(t) = [! + Go(q) C2(q)l- 'Go(q) C I (q)#(t) 

+ l# + Go(q)C2(q)]-'Ho(q)~(t) (A 4) 

Analogously to the SISO case we define the performance 
cntenon as 

~ _  - t ¢ o  - T - t t o  J t (~ )  = tr {W2(GcL(e )*~to)GcL(e ) 
~ t  

i ¢ 0  T t t o  + 17-1ct (e )*Ato)ISIcL(e - ))} dip, (A 5) 

where 

t~cL(q ) = [# + G(q, O)C2(q)]-'G(q, O)C,(q) 

- [# + Go(q)C2(q)]-'Go(q)C,(q), (A 6) 

17-let (q) = 11 + G(q, O)C2(q)]-i l?tf(q) 

- [t + Go(q)C2(q)]-lHo(q) (A 7) 

W 2 is a symmetric weighting matrix, that should reflect the 
relative importance of each component in the performance 
criterion The following proposition gives an alternative 
expression for this performance criterion 

Proposition A 1 

J , (~ )  = tr {[! + G(e " ,  O(~))C2(e . . . .  ) ] - r  

x w2[l  + G ( e  "~, b ( ~ ) ) C d e " O ) l  - '  

x 7"(e ''°, O(~))dP(to)¢r(e . . . .  , 0(~))} dip, 

where the signal fi(t) is according to Fig 1 given by 

a(t) = [1 + C2(q)G,,(q)]-tCt(q)P(t) 

- I t  + C2(q)Go(q)] 'C2(q)Ho(q)e(t), 

and the matrix ~(to)  is defined by equation (14) 

The performance criterion J t (~ )  satisfies 

(A 8) 

(A 9) 

Proof See Appendix B [] 

Now we define the general scalar performance criterion Jc. 

for the MIMO case as 

J~(fl~) = tr {['(to)f'(e% 0(~))  

x r(to):U(e ... .  , 0 (~) )  dto, (A 10) 

where F(w) and ['(to) are Hermltian weighting matrices We 
partition F(to) into four blocks matching the block structure 
in T(q, 0), see equation (3), 

r (~)  = [r,,(to) r,:(to)] (A 11) 
t F2i(to) r22(to) J 

We now formulate the MIMO analogon of Theorem 4 1 

Theorem A 2 The optimal choice of design variables (18) is 
given by 

~ / T ( e  . . . .  )W, ~ - '  . . . .  - optH] ( e ) -  ciF(to), (A 12) 

¢D u opt(tO) = c 2 r i  i ( to ) ,  t l ) u e  opt(t0)  = c 2 F i z ( t o ) ,  

where c I and c2 are arbitrary positive constants 

Proof Follows from the application of Lemma 13 1 in Ljung 
(1987) to the equations (A 2) and (A 10) As both F(to) and 
*(to) are Hermltlan, a third constraint, namely on *.,,(to) is 
superfluous Also no constraint on *e  in relation to  F22(to ) IS 
required because its contribution to the identification 
criterion (38) is independent of 0 and does therefore not 
influence the minimizing value 0* Finally the constant 
scaling factors c 1 and c 2 do not affect the optimality 
property [] 

Analogous to the SISO case an auxiliary quadratic 
performance criterion ./2 can be introduced, yielding the 
values for F and 

r(to) = ,i,(to), 
F(to)= [1+ (~s(e . . . .  )C/(e .... ) ] - r  (A 13) 

× w2[t  + C.t(e'')C2(e"°)] - '  

The discrepancies 6t(to ) and 62(to ) have an obvious MIMO 
analogon, that will not be given here explicitly Finally we 
are able to formulate the optimal choice of design vanables 
in a Theorem 

Theorem A 3 If a fixed noise model fit(q) = 1 + t~s(q)Cz(q) 
is used in the prediction error identification and if the 
number of samples tends to infinity the choice of design 
variables 

f * , ,  opt(to) = *dip)  
92 opt = ] * .e  opt(to) = *a~(to), (A 14) 

lt~ Wl opt = W2 

is arbltranly close to the optimal solution 50~ opt, provided 
61(to ) and 6z(to ) are  sufficiently small, I e 

hm J i ( ~ 2 o p t ) - J l ( ~ l  opt)=0 (A 15) 
¢~1 ~2 ~ O  

Proof Follows from Theorem A 2, following the steps of 
the proof of Theorem 4 2 [] 

This means that again data collection should take place 
under operational conditions in order that a model is 
identified that gives an optimal closed-loop description of the 
system The fixed nosle model Hy(q)= [1 + Gy(q)C2(q) ] can 
be realized by prefiltermg the prediction error e(t, O) with 
the filter L(q)= [1 + Gf(q)C2(q)] -I in combination with an 
output error identification scheme Note that in the MIMO 
case this is not equivalent to filtering the input/output data 
with this filter 

B Proof of Proposiuons 3 1 and A 1 
In this appendix we give a proof for Proposition A 1 As 

Proposition 3 1 is a special case of Proposition A 1 this is at 
the same time a proof for Proposition 3 1 For ease of 
notation we will not always explicitly mention dependency of 
aquant~ty on q or t and we will use the short-hand notation 
G and H for G(q, (~) and 12If(q) respectively 



6 9 0  R G HAKvOORT e t  a l  

Proof Define the auxlhary signal 37(t) as 

)~(t) = ([1 + G(q)C2(q) ]- IG(q)Cl(q) 

- [! + Go(q)C2(q)]-'Go(q)C,(q))~(t) 
+ {[1 + G(q)C2(q)]-1121(q) 

- [1 + Go(q)C2(q)]-'Ho(q))~(t) (A 16) 

Then as the stgnals ~ and ~ are uncorrelated the performance 
criterion J l ( ~ )  is obviously equal to 

I: J , ( ~ )  = tr {W2~(~o)} dco (A 17) 

Now the auxlhary signal .f(t) can be written as 

~(t)  ; ([I + d c d - ' d  - 11 + aocd- 'Go)c ,~  

+ ([1 + (~C21- ' / ' t  - [1 + GoC2I-'Ho)~ 

= [I + 8C2l - ' { (0  - [I + OCdGo[l + C2G,,I-')C, 

+ ( R  - [I + ~.C:l[I  + G . c d  'H,,)~} 

= 1, + O c d - ' { ( O [ ,  + C~G,,l - [* + OC=]G,,) 

x [I + CzGo] - 'C .g  + (121 - H,,)e 

+ fi t  + ¢ , c d  - [t + Ocd) [*  + G , , cd -  'H , :}  

= 11 + O C d - ' { ( O  - C, ,)[ /+ C=C,,]- 'C,~ 

+ (12I - H,,)a - ((0 - Go)C2[! + GoC2]- '~ ,g '}  

= [l + GC2] - I{ (0  - Go)([l -J- C2Go]- ICI ~ 

- l / +  C~G,,I- 'C~H,,O + ( H  - H,,)~} 

= [ / +  OC. . l - ' [ (0  - a,,)a + 09  - H,,)~I 

= [1 + G(q ,  O)C2(q ) ] - 'T (q ,  O)[~[~]_t J-f  (A 18) 

with the signal ti(t) given by (A 9) Consequently (A 17) and 
(A 18) yield the desired result [] 


