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Abstract— This work develops a measurement-driven and
model-based formal verification approach, applicable to systems
with partly unknown dynamics. We provide a principled
method, grounded on reachability analysis and on Bayesian in-
ference, to compute the confidence that a physical system driven
by external inputs and accessed under noisy measurements
verifies a temporal logic property. A case study is discussed,
where we investigate the bounded- and unbounded-time safety
of a partly unknown linear time invariant system.

I. INTRODUCTION

The design of complex, high-tech, safety-critical systems
such as autonomous vehicles, intelligent robots, and cyber-
physical infrastructures, demands guarantees on their correct
and reliable behaviour. Correct functioning and reliability
over models of systems can be attained by the use of
formal methods. Within the computer sciences, the formal
verification of software and hardware has successfully led to
industrially relevant and impactful applications [8].

The strength of formal techniques, such as model check-
ing, is bound to a fundamental requirement: having access
to a model of the system of interest. In practice, for most
physical systems their dynamical behaviour is known only
in part. This holds in particular for biological systems [1] or
for classes of engineered systems where, as a consequence,
the use of uncertain dynamical models built from data is
common practice [17].

Only limited work within the formal methods community
deals with the verification of models with partly unknown
dynamics. Classical results [3], [14] consider the verification
problem for non-stochastic models described by differential
equations and with bounded parametric uncertainty. Simi-
larly, but for continuous-time probabilistic models, [5], [6]
explore the parameter space with the objective of model
verification. Whenever full state measurements of the sys-
tem are available, Statistical Model Checking (SMC) [18],
[24] replaces model(-based) verification procedures with
empirical (statistical) testing. However SMC is limited to
stochastic systems with little or no non-determinism, and
may require gathering a large set of measurements. Exten-
sions towards the inclusion of non-determinism have been
studied in [13], [19], with preliminary steps towards Markov
decision processes. Related to SMC techniques but bound to
finite state models, [7], [21], [23] assume that the system is
encompassed by a finite-state Markov chain and efficiently
use data to learn a model and to consequently verify it.
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An alternative approach put forward in this work, allowing
both partly unknown dynamics over uncountable (continu-
ous) variables and noisy output measurements, is the usage of
a Bayesian framework relating the confidence in the asserted
validity of a formal property to the uncertainty built over a
model from data. This approach provides a new integration
of model-based verification methods and data-driven infer-
ence techniques. When applied on nonlinearly parameterised
linear time invariant (LTI) models this approach introduces
computational issues, which as proposed in [10] can be
mitigated by statistical methods. Instead, in order to obtain
reliable numerical solutions, we propose the use of linearly
parameterised model sets defined through orthonormal basis
functions to represent partially unknown systems of interest.
This is a broadly used framework in system identification
[16], [17]: it allows for the incorporation of prior knowledge,
while maintaining the benefits (computational aspects) of
linear parameterisations. Practically, it has been widely used
for the modelling of physical systems, such as the thermal
dynamics of buildings [25]. In this contribution we extend
the results in [12], obtained for a time-bounded subset of
temporal logic properties, to unbounded-time temporal logic
properties, and analyse their robustness.

The framework and problem statement are given
in Section II. The main results both for bounded and
unbounded-time temporal logic properties are discussed
in Section III. A case study for a bounded-time safety
property (Sec.III-B) and for its unbounded-time extension
(Sec. III-D) is given to complement the theory. The proofs
of the statements can be found in [11].

II. GENERAL FRAMEWORK AND PROBLEM STATEMENT

Denote with S a physical system, whose input signal
u(t) ∈ U, t ∈ N, captures how the environment acts on
the system, and whose output signal y0(t) ∈ Y indicates
how the system interacts with the environment, or how the
system can be measured. The knowledge of the behaviour of
the system is often limited or uncertain, and as such there
is no “true” mathematical model available to analyse its be-
haviour. A-priori available knowledge allows us to construct
a model set G with elements M ∈ G: this set supports the
uncertainty about the “true” model as a distribution over a
parameterisation θ ∈ Θ, G = {M(θ)|θ ∈ Θ}. The unknown
“true” model M(θ0) representing S, is assumed to be an
element of G, namely θ0 ∈ Θ.

Samples can be drawn from the underlying physical sys-
tem via a measurement set-up, as depicted in Figure 1.
An experiment consists of a finite number (Ns) of input-
output samples drawn from the system, and is denoted
by ZNs = {u(t)ex, ỹ(t)ex}Ns

t=1, where u(t)ex ∈ U is the
input for the experiment and ỹ(t)ex is a (possibly noisy)
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measurement1 of y0(t)ex. We assume that at the beginning
of the measurement procedure (say at t = 0), the initial
condition of the system, encompassed by the initial state
x(0)ex of models in M, is either known, or, when not
known, has a structured uncertainty distribution based on the
knowledge of past inputs and/or outputs.

u(t)ex
S

e(t)

y0(t)ex

ỹ(t)ex

Fig. 1: System and measurement
setup. In the measurement setup
(grey box) the measured output
ỹ(t)ex includes the system out-
put y0(t)ex and the measure-
ment noise e(t). Data collected
from experiments comprises the
input u(t)ex and the measured
output ỹ(t)ex signals.

The end objective is to analyse the behaviour of system
S. We consider properties encoded as specifications ψ and
expressed in a temporal logic of choice (to be detailed
shortly). Let us remark that the behaviour of S to be analysed
is bound to a set of operating conditions that are pertinent
to the verification problem and that will be indexed with
ver: this comprises the set of possible input signals u(t)ver
(e.g., a white or coloured noise signal, or a non-deterministic
signal u(t)ver ∈ Uver ⊆ U), and of the set of initial states
x(0)ver ∈ Xver. The system satisfies a property if the “true”
model representing it satisfies it, namely S � ψ if and only
if M(θ0) � ψ.

In this work we consider the satisfaction of a property
M(θ) � ψ as a binary-valued mapping from the parameter
space Θ. More generally, when in addition to the measure-
ments of the system also its transitions are disturbed by noise,
then property satisfaction is a mapping from the parameter
space Θ to the interval [0, 1], and quantifies the probability
that the model M(θ) satisfies the property.

Definition 1 (Satisfaction Function, [5]): Let G be a set
of models M that is indexed by a parameter θ ∈ Θ, and let
ψ be a formula in a suitable temporal logic. The satisfaction
function fψ : Θ→ [0, 1] associated with ψ is

fψ(θ) = P (M(θ) � ψ) .

Let us assume that the satisfaction function fψ is measurable
and entails a decidable verification problem for all θ ∈ Θ.
The computation of the satisfaction function, or equivalently
the exploration of a parameter set over a formal property, has
been studied exclusively for continuous time, autonomous
models in [3], [9], [14].

Problem 1: For a partly unknown physical system S, un-
der prior knowledge on the system given as a parameterised
model class G supporting an uncertainty distribution over
the parameterisation, draw data from the measurement setup
and verify properties on S expressed in a temporal logic of
choice, while quantifying the confidence of the assertion.

A. A Bayesian Framework for Data-driven Verification

Denote loosely with P (·) and p (·) respectively a probabil-
ity measure and a probability density function, both defined

1Both the operating conditions of the experiment, that is the input signal
u(t)ex and the initial state x(0)ex, and the measurements have been
indexed with ex to distinguish them from the operating conditions of interest
for verification (ver), to be discussed shortly.

over a continuous domain. We employ Bayesian probability
calculus [20] to express the confidence in a property as a
measure of the uncertainty distribution defined over the set
G. Within the Bayesian framework, uncertainty distributions
are handled as probability distributions of random variables.
Therefore the confidence in a property is computed as a
probability measure P (·), integrating the density p (·) of the
uncertainty variable over G.

Proposition 2 (Bayesian Confidence): Given a specifica-
tion ψ and a data set ZNs , the confidence that S � ψ can be
quantified via inference as

P
(
S � ψ | ZNs

)
=
∫

Θ
fψ(θ)p

(
θ|ZNs

)
dθ . (1)

The a-posteriori uncertainty distribution p
(
θ|ZNs

)
, given

the data set ZNs, is based on parametric inference over θ as

p
(
θ|ZNs

)
=

p(ZNs |θ)p(θ)∫
Θ
p(ZNs |θ)p(θ)dθ , (2)

which employs an uncertainty distribution p (θ) over the
parameter set Θ, representing the prior knowledge.

The statement can be formally derived based on standard
Bayesian calculus [20]. In general (1)-(2) in Proposition 2
lack analytical solutions, and the assessment of the binary
satisfaction function (1) may be computationally intensive.
On the other hand, statistical methods, such as [10] based
on Bayesian theory, lead to involved sampling and introduce
additional uncertainty from Monte Carlo techniques.

On the contrary, in the next section, we propose a novel
numerical approach over a class of discrete-time linear time-
invariant systems. Exploiting linear parameterisations and
considering properties expressed within a fragment of linear-
time temporal logic (LTL) leads to computational procedures
for the feasible sets and the confidence on the properties.

III. LTL VERIFICATION OF LTI SYSTEMS

Consider a system S that can be represented by a class of
finite-dimensional dynamical models that evolve in discrete-
time, and are linear, time-invariant (LTI), and not probabilis-
tic. These models depend on input and output signals ranging
over R. The experimental measurement setup, as depicted
in Figure 1, consists of the signals u(t)ex and ỹ(t)ex =
y0(t)ex + e(t), representing the inputs and the measured
outputs, respectively, and where e(t) is an additive zero-
mean, white, Gaussian-distributed measurement noise with
variance σ2

e that is uncorrelated from the inputs. Ns samples
are collected within a data set ZNs = {u(t)ex, ỹ(t)ex}Ns

t=1.
System properties are expressed, over a finite set of atomic

propositions pi ∈ AP , i = 1, . . . , |AP |, in Linear-time
Temporal Logic [2]. LTL formulae are built recursively via
the syntax ψ ::= true | p | ¬ψ | ψ∧ψ | ψ∨ψ | ©ψ | ψUψ.
Let π = π(0), π(1), π(2), . . . ∈ ΣN+

be a string composed
of letters from the alphabet Σ = 2AP , then the satisfaction
relation between π and ψ is denoted as π � ψ. Denote the
k-bounded and unbounded invariance operator as �kψ =∧k
i=0©

iψ and �ψ = ¬(true U ¬ψ), respectively.
Of interest are formal properties encoded on the input-

output behaviour of the system, and over a time horizon t ≥
0. The output y0(t)ver ∈ Y is labeled by a map L : Y→ Σ,
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which assigns letters α in the alphabet Σ via half spaces on
the output, as

L(y0(t)ver) = α ∈ Σ ⇔
∧
pi∈αApiy0(t)ver ≤ bpi , (3)

for given Api , bpi ∈ R that is, sets of atomic propositions
are associated to intervals over Y ⊂ R. Let us underline
that properties are defined over the behaviour y0(t)ver of
the system, and not over the noisy measurements ỹ(t)ex
of the system in the measurement setup. Additionally, for
the verification problem the input signal is modelled as a
bounded signal u(t) ∈ Uver, and represents possible external
non-determinism of the environment acting on the system.
Introduce Θψ to be the feasible set of parameters, such that
for every parameter the property ψ holds iff θ ∈ Θψ , i.e.,
∀θ ∈ Θ : θ ∈ Θψ ⇔ M(θ) � ψ. As such Θψ can
be characterised as a level set of the satisfaction function,
namely fψ , Θψ = {θ ∈ Θ : fψ(θ) = 1}.

A. Verification of Bounded-Time Properties

Models M in the set G have the following representation:

M(θ) :

{
x(t+ 1) = Ax(t) +Bu(t),
ŷ(t, θ) = θTx(t) +Du(t),

(4)

and are parameterised by θ =
[
θ1 . . . θn

]T ∈ Θ ⊂ Rn,
with a prior probability distribution p (θ). For a given initial
condition x(0) and input sequence, the output of the “true”
model ŷ(t, θ0) is equal to the system output y0(t).

Given operating conditions for the experiment set-up,
the measured signal ỹ(t)ex can be fully characterised: its
probability density, conditional on the parameters θ, is

p
(
ZNs |θ

)
=
∏Ns

t=1 p (ỹ(t)ex|θ)

= 1√
σ2Ns
e (2π)Ns

exp
[
−

∑Ns
t=1(ŷ(t,θ)−ỹ(t)ex)2

2σ2
e

]
,

and can be directly used in Proposition 2. This condi-
tional density p

(
ZNs |θ

)
depends implicitly on the given

initial state x(0)ex and, for the case of a given uncertainty
distribution for x(0)ex, p

(
ZNs |θ

)
should be marginalised

over x(0)ex [22]. The a-posteriori uncertainty distribution is
obtained as the analytical solution of the parametric inference
step in (2) [22].

Recall now that for a given specification ψ, we seek
to determine the feasible set of parameters Θψ , such
that the corresponding models admit property ψ, namely
M(θ) � ψ, ∀θ ∈ Θψ . Since models M(θ) have a linearly-
parameterised state space realisation as per (4), it follows
that when the set of initial states and inputs Xver and Uver
are bounded polyhedra, the verification of a class of safety
properties expressed by formulae with labels as in (3) leads
to a set of feasible parameters Θψ that is a polyhedron, which
can be easily computed. More precisely, following theorem
can be derived.

Theorem 3 ([12]): Given a bounded polyhedral set (or
equivalently a polytope) of initial states x(0) ∈ Xver and
of inputs u(t) ∈ Uver for t ≥ 0, and considering a labelling
map as in (3), then the feasible set Θψ of the parameterised
model set (4) is a polyhedron for properties ψ composed of
the LTL fragment ψ ::= α|©ψ|ψ1 ∧ ψ2, with α ∈ Σ.

In the computation of the feasible set (see [11]), the faces
of the polyhedron Θψ are shown to be a function of the
vertices2 of the bounded set of initial states Xver and of the
set of inputs Uver, and are expected to grow in number as a
function of the time horizon of the property.
The result in Theorem 3 is valid for any finite syntactical
composition within the LTL fragment ψ ::= α|©ψ|ψ1 ∧ψ2,
as such it only holds for finite horizon properties. Properties
defined over the infinite horizon will be the objective of
Section III-C.

B. Case Study: Bounded-Time Safety Verification
Consider a system S and verify whether its output

y0(t)ver remains within the interval I =
[
−0.5, 0.5

]
(which we label as ι), for the next 5 time steps, under
u(t)ver ∈ Uver = [−0.2, 0.2] and x(0)ver ∈ {02} = Xver.
To formalise the statement, introduce the alphabet
Σ = {ι, τ} and the labelling map L : L(y) = ι,∀y ∈ I,
L(y) = τ,∀y ∈ Y \ I. Under the stated conditions, check
whether the following LTL property holds: S �

∧5
i=1(©)iι.

We assume that system S can be represented as an element
of a model set G encompassing transfer functions over a
second-order Laguerre basis [15] (this is a special case
of orthonormal basis functions), which translates to the
following parameterised state-space representation:

x(t+ 1) =
[

a 0
1−a2 a

]
x(t) +

[ √
1−a2

(−a)
√

1−a2

]
u(t),

ŷ(t, θ) = θTx(t) .
(5)

The parameter set is selected as θ ∈ Θ = [−10, 10]2,
whereas the coefficient a is chosen to be equal to 0.4.
We select, as prior available knowledge on the system, a
uniform distribution p (θ) on the model class, and pick a
known variance σ2

e = 0.5 for the white additive noise on
the measurement. The set of feasible parameters Θψ ⊂ Θ
is represented in Figure 2 and is computed according to
Theorem 3. Based exclusively on prior available knowledge,
the confidence associated to S �

∧5
i=1(©)iι amounts to3

0.0165. Let us now set up an experiment on the system
with “true parameter” θ0 = [1 0]T (Figure 2): select an
input signal u(t)ex as a realisation of white noise with a
uniform distribution over [−0.2, 0.2], and measure ỹ(t)ex for
200 consecutive time instances. Note that in this case Uver
and Uex are the same. The uncertainty distribution is then
refined as p

(
θ|ZNs

)
, and results in a confidence (1) in the

property equal to 0.779.
We have repeated this test 100 times, and extended it to
several instances of the parameter θ0 characterising the
underlying system S. In all instances, after obtaining 200
measurements the a-posteriori probability leads to the confi-
dence in the safety of the system, and is displayed in Table
I via its mean and variance terms.

C. Verification of Unbounded-Time Properties
In this section we extend the approach unfolded in Section

III-A, to hold on the LTL fragment ψ ::= α|©ψ|ψ1 ∧ ψ2

with additionally the unbounded invariance (safety) operator.
Recall the form of the k-bounded and of the unbounded

2A polytope can be written as the convex hull of a finite set of vertices.
3This is obtained by computation of (1) with probability distribution

p (θ): integrals are numerically solved in Matlab.
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Fig. 2: Feasible set of parameters
in Θ, and contour lines of the
quantity p

(
θ|ZNs

)
, obtained for

θ0 = [1 0]T .

invariance operators, namely �kψ =
∧k
i=0©

iψ and �ψ =
¬(trueU¬ψ) respectively. The extension from a k-bounded
operator, covered by the result in Theorem 3, to the un-
bounded invariance one, is based on the concept of robust
positive invariance [4, Def. 4.3], recalled next.

Definition 4: For the system x(t + 1) = Ax(t) + Bu(t),
the set S ⊆ X is said to be robustly positively invariant if,
for all x(0) ∈ S and u(t) ∈ Uver, the condition x(t) ∈ S
holds for all t ≥ 0.

Recall that the feasible set Θψ is defined as the set of
parameters for which property ψ holds, namely ∀θ ∈ Θψ :
M(θ) � ψ. The satisfaction relation M(θ) � ψ depends
implicitly on the set of initial states x(0) ∈ Xver and on
the set of inputs Uver. Let us extend the definition of the
feasible set to explicitly account for its dependence on the
set of initial conditions: given a bounded and convex set
S ⊂ X, let Θψ(S) be defined as the set of parameters in Θ
for which the parameterised models M(θ), initialised with
x(0) ∈ S, satisfy ψ over input signals u(t) ∈ Uver, t ≥ 0.
Hence the feasible set Θψ can be written as a function of
the set of initial states Xver, that is Θψ (Xver). Thus the
extended map Θψ (·) takes subsets of the state space into
subsets of the parameter space. Note that if S is a robustly
positively invariant set that includes the set of initial states
Xver ⊆ S, then for all θ ∈ Θψ(S) the models M(θ) satisfy
ψ over all infinite-time model traces x(t): this allows to state
that M(θ) � �ψ. We can show that the following holds.

Lemma 5: The function Θψ(·) : 2X → 2Θ, for specifica-
tions obtained as ψ ::= α | ©ψ | ψ1 ∧ ψ2, is monotonically
decreasing: that is if S1 ⊆ S2, then Θψ(S2) ⊆ Θψ(S1).

Based on the result in Lemma 5, we conclude that the
maximal feasible set Θ�ψ is obtained as a mapping from
the minimal robustly positively invariant set S that includes
Xver: Θ�ψ = Θψ(S). This leads next to consider under
which conditions such minimal robustly positively invariant
set S can be exactly computed or approximated.

Feasible set for invariance properties with Xver = {0n}:
For Xver = {0n}, assuming a bounded interval Uver with the
origin in its interior, and under some basic assumptions on
the dynamics (to be shortly discussed), the minimal robustly
positively invariant set can be shown to be a bounded

TABLE I: Mean (µ) and variance (σ2) of the confidence obtained from 100
experiments with 200 measurements each.

θ0 µ σ2 θ0 µ σ2

[-1 -1]T 0.348 0.073 [ 1 -1]T 0.491 0.085

[-1 0]T 0.705 0.060 [ 1 0]T 0.730 0.056

[-1 1]T 0.492 0.086 [ 1 1]T 0.339 0.065

and convex set that includes the origin [4]. Retaining the
condition of Uver being bounded and having the origin in
its interior, we first consider the case that Xver = {0n} and
characterise S via tools available from set theory in systems
and control; thereafter we look at extensions to more general
sets of initial states Xver.

Assume that Uver includes the origin, and denote the for-
ward reachability mappings initialised with R(0) := {0n} ⊂
X as

R(i) := Post(R(i−1)), (6)

with set operation Post(X) := {x′ = Ax + Bu,x ∈
X,u ∈ver}. Denote the limit reachable set as R∞ =
limi→∞R(i). From literature [4] we recall that properties
of these i-step reachable sets include the following ones.
For a reachable pair (A,B) and an asymptotically stable
matrix A, the ∞-reachable set R∞ is bounded and convex
[4, Proposition 6.9]. The k-step reachable set converges
to the ∞-reachable set via (6), since it is monotonically
increasing R(i) ⊆ R(i+1). Moreover, R∞ is the minimal
robustly positively invariant set for the system, so that any
positively invariant set must include R∞ [4, Proposition
6.13]. Thus, starting from x(0) = 0n, all x(t) ∈ R∞.
Furthermore - of interest to this work - we conclude that
Θ�kψ= Θψ

(
R(k)

)
and that Θ�ψ = Θψ

(
R∞

)
. For finite

iterations the reachable setsR(i) are polytopes, and ifR(i) =
R(i+1), then R(i) = R∞. Though the iterations can stop
in finite time, in general the number of iterations to obtain
R∞ can be infinite. Whilst the minimal robustly positively
invariant set is not necessarily closed or a polytope, there
exist methods to approximate R∞ as detailed in [4]. For
instance, for stable systems, R(k) is shown to converge to
R∞, in the sense that for all ε > 0 there exists k̄ such that
for k ≥ k̄, R(k)⊆ R∞⊆ (1 + ε)R(k) [4, Proposition 6.9].

Feasible set under general polytopic initial states: Recall
that the maximal feasible set Θ�ψ is obtained as a mapping
from the minimal robustly positively invariant set S including
Xver, that is Θ�ψ = Θψ(S). Under the condition Xver ⊆
R∞ and ceteris paribus, then R∞ is the minimal robustly
positively invariant set that includes Xver, and Θψ(R∞) =
Θ�ψ .

Let us now extend the study to the case where the
conditions Xver = {0n} or its extension Xver ⊆ R∞ do
not apply, while the condition on the bounded set Uver is
maintained, that is 0 ∈ Uver. Consider the more general case
where the set of initial states is a polytope but not necessarily
a subset ofR∞. Denote the union of the forward reachability
mappings initialised with R(0)

Xver
:= Xver ⊆ X as

R(i)
Xver

:= R(i−1)
Xver

∪ Post(R(i−1)
Xver

) . (7)

This set is also known in the literature as the reach tube.
The corresponding set over the infinite time horizon is
denoted as R∞Xver

= limi→∞R(i)
Xver

. Notice that if Xver ⊆
R∞, then R∞ = R∞Xver

, as discussed above. The iteration
is monotonically increasing R(i)

Xver
⊆ R(i+1)

Xver
, and whenever

R(i)
Xver

= R(i+1)
Xver

it stops after a finite number of iterations
with R∞Xver

= R(i)
Xver

. Of course, also in this more general
case, the number of iterations can be unbounded, however
the convergence properties of R(i) extend seamlessly to the
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case of sets R(i)
Xver

. Since R(i)
Xver

is a union of polytopes, it is
not guaranteed to be a convex set. Still, it can be shown via
the proof of Theorem 3 that the computation of the feasible
set Θψ(S) boils down to that of Θψ

(
conv(S)

)
.

Robust approximations of the feasible set via Θψ(·):
We exploit the convergence in the computation of the
feasible set for invariance properties, in order to bound the
error incurred in the approximations of the sets R∞Xver

and
R∞. Let B denote a unit ball centred at the origin and let
the Hausdorff distance between setsR1 andR2 be defined as

δH(R1,R2) = inf{ε ≥ 0|R1 ⊆ R2 + εB,R2 ⊆ R1 + εB}.

Lemma 6: Consider a polytope R, and a property ψ
comprised of ψ ::= α|©ψ|ψ1 ∧ ψ2, with α ∈ Σ, for which
Θψ(R) is a non-empty polytope with vertices vi and the
origin in its interior. Let A be bounded as ‖A‖2 ≤ 1. Then
for any εx ≥ 0,

Θψ(R+ εxB) ⊆ Θψ(R) ⊆ Θψ(R+ εxB) + εθB (8)

if εθ ≥
εxεp maxi(‖vi‖)2

1 + εxεp maxi(‖vi‖)
, for εp := max

p∈AP

|Ap|
|bp|

.

Let us briefly discuss the conditions under which Lemma
6 is applicable. The condition that Θψ(R) is not empty
is raised to avoid the trivial case where Θψ(R) = ∅,
and (8) holds for all εθ. The condition that Θψ(R) is a
polytope and hence bounded is necessary to obtain a bounded
Hausdorff distance. This distance quantifies the difference
between two sets, and is a necessary step to bound the
approximation error. The requirement that Θψ(R) includes
the origin is a sufficient condition and relates to well-
posedness for bounded input sets including the origin. When
considering invariance properties defined for 0 ∈ Uver and
for any polytope Xver, the requirement that 0n ∈ Θψ(·) is
necessary for Θ�ψ to be non-empty: this can be intuitively
illustrated by noting that under an assumption of asymptotic
stability for A, for any θ and for u(·) = 0 the output ŷ(t, θ)
of the model in (4) converges to 0. Hence for a property
to be satisfied under these conditions it should at least hold
for the zero output, which is equivalent to demanding that it
holds for θ = 0n. For any atomic proposition pi ∈ AP (see
Eq. (3)) it can be shown that there is an invertible mapping
between the row vectors, proportional to the normals of the
faces of the polyhedral set Θpi(x(0)), and the initial state
x(0). Therefore, if R(k) has the origin in its interior, then
Θpi(R(k)) has to be bounded, and as a consequence so has
any feasible set comprising this atomic proposition. This
holds for k ≥ n if (A,B) is a reachable pair and if Uver has
0 in its interior. Under the same conditions there exists a k
such that R(k)

Xver
has 0n in its interior. The generalisation to

the case dealing with an Hausdorff distance of the feasible
set for invariance properties with a set of inputs 0 6∈ Uver is
outside of the scope of this work.

Convergence properties: We can employ Lemma 6 to
bound the Hausdorff distance between Θψ(R(k)

Xver
) and Θ�ψ .

If Xver = {0n} and the spectral radius of A is strictly less
than 1 (that is ρ(A) < 1), then the Hausdorff distance can
be bounded as

δH(R(k),R∞) ≤ ε(k) := ‖Ak‖2 max
u∈U

(|u|)c1, (9)

with c1 a bound on
∑∞
i=0 ‖AiB‖, which is the

peak-to-peak performance of the dynamical system
obtained from matrices (A,B). In the case that
Xver 6⊆ R∞ then the forward reachable iteration can
be rewritten as R(k)

Xver
=
(⋃k

i=0A
iXver

)
+R(k). The

Hausdorff norm can be bounded as δH(R(k)
Xver

,R∞Xver
) ≤

ε(k) + ‖Ak+1‖2δH (Xver, {0n}). Note that for ρ(A) < 1
the norm ‖Ak‖2 → 0 for k → ∞. In case the conditions
of Lemma 6 on R(k)

Xver
⊆ X and Θψ

(
R(k)

Xver

)
hold, the

Hausdorff distance δH(Θ�kψ,Θ�ψ) can be bounded by

‖Ak‖2 max
i

(‖vi‖)2εp
(

max
u∈U

(|u|)c1 + ‖A‖δH(Xver, {0n})
)
.

(10)
Use in the verification of unbounded-time properties:

Based on the convergence properties of the feasible set,
the asymptotic behaviour of the confidence computed in
Proposition 2 can be stated as follows.

Corollary 7 (Convergence): Under the conditions of
Lemma 6, for a Gaussian distribution p (θ) ∼ N (µθ, Rθ)
with a covariance Rθ � 0, P

(
θ ∈ Θ�kψ

)
→ P

(
θ ∈ Θ�ψ

)
for k →∞.

Theorem 3 can now be generalised to include unbounded-
time invariance properties as follows.

Theorem 8: Consider a polytopic set of initial states
x(0) ∈ Xver, inputs u(t) ∈ Uver for t ≥ 0, and a labelling
map as in (3). Let R̂∞Xver

be a polytopic superset of the
minimal robustly positively invariant set that includes Xver,
denoted as R∞Xver

. Then the feasible set admits a polyhedral
subset Θ̂ψ ⊂ Θψ for every specification ψ expressed within
the LTL fragment ψ := α|©ψ|ψ1 ∧ψ2|�ψ, and if R̂∞Xver

=

R∞Xver
then Θ̂ψ = Θψ .

D. Case Study (cont.): Unbounded-Time Safety Verification
We study convergence properties for the safety speci-

fication ι considered in the case study of Section III-B,
maintaining the same operating conditions as before for the
safety verification and the experimental setup. In Figure
3a the forward reachability sets R(k) with k = 1, . . . , 20
are obtained for the model dynamics in (5). Figure 4
(upper plot) displays bounds ε(k) on the Hausdorff dis-
tances δH(R(k),R∞) computed with (9): starting from R(1)

(slanted polygon) as in Figure 3a, it can be observed that the

−0.2 0 0.2
−0.5

0

0.5

x1

x
2

(a) The first 20 iterations of the
forward reachable set R(k), k =
1, . . . , 20 for the case study. The
reachable sets grow in size from
dark grey (k = 1) to light grey
(k = 20), so that R(k−1) ⊆ R(k).

−5 0 5
−5

0

5

θ1

θ 2

(b) The feasible sets for the k-
bounded invariance property �kι,
with k = 1, . . . , 20 (from lighter
to darker color), obtained for the
case study.

Fig. 3: Reachable and feasible sets for unbounded-time verification problem.
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forward reachable sets R(k) converge rapidly, as confirmed
with the error bound displayed in Figure 4 (upper plot).

Based on R(k), the feasible set for the k-bounded in-
variance �kι can be computed as Θ�kι = Θι

(
R(k)

)
. The

feasible sets Θ�kι with k = 1, . . . , 20 are plotted in Figure
3b. Observe that the feasible set Θ�1ι is not bounded, but
for k ≥ 2 the feasible sets are bounded and, as expected,
decrease in size with time. In Figure 4 (middle plot) bounds
on the Hausdorff distances δH(Θ�ι,Θ�kι) are given for
k = 2, . . . , 20 (no finite bound is computed for the index
k = 1, since for that instance the feasible set is not
bounded). Let us conclude this case study looking at confi-
dence quantification, as a function of the time horizon. Figure
4 (lower plot) represents the confidence over the property
P
(
θ ∈ Θ�kι | ZNs

)
, for indices k = 1, . . . , 20. Unlike the

case discussed in Section III-B, which focused on looking at
statistics of the confidence via mean and variance drawn over
multiple experiments, we zoom in on asymptotic properties
by considering a data set ZNs comprising a single trace
made up of 200 measurements, simulated under the same
conditions as in Section III-B, and with θ0 = [1 0]T . From
the resulting probability density distribution p

(
θ | ZNs

)
, it

is observed that the confidence converges rapidly to the
displayed nonzero values.

IV. DISCUSSION AND GENERALISATIONS

The computational bottleneck of the discussed approach
resides on the characterisation and computation of the feasi-
ble set. The characterisation based on polytopes allows for
an analytical expression, which however may not scale to
models with very large dimension (the number of half-planes
characterising the feasible set may increase with the time
bound of the LTL formula ψ and with the cardinality of the
atomic propositions in the alphabet Σ). Further its numerical
computation (necessary for infinite-horizon properties) incurs
similar limitations.

Note that these computations are essentially similar to
known reachability operations, therefore the method is ex-
tendable well beyond the 2-dimensional case study when

5 10 15 20
0

0.5

k

ε(k) ≥ δH(R(k),R(∞))

5 10 15 20
0

1.5

3

k

εθ(k) ≥ δH(Θ�ι,Θ�kι)

0 5 10 15 20

0.8
0.9

1
P
(
θ ∈ Θ�kι | ZNs

)

Fig. 4: (Upper plot) Error bound on the approximation level of the k-th
forward reachable sets, which is such that R(∞) ⊆ R(k) + ε(k) for
k = 1, . . . , 20. (Middle plot) The Hausdorff distance εθ(k) between Θ�kψ
and Θ�ψ with k = 2, . . . , 20, obtained for the case study.(Lower plot)
Confidence that S � �kι for k = 1, . . . , 20 for the case in Section III-B,
with a new experiment consisting of 200 samples collected as ZNs .

applying sophisticated reachability analysis tools in the lit-
erature.
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