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Abstract. Asymptotic variance expressions are analysed for models that are identi-
fied on the basis of closed-loop data. The considered methods comprise the classical
’direct’ and ’indirect’ method, as well as the more recently developed indirect meth-
ods, employing coprime factorized models and model parametrizations based on the
dual Youla/Kucera parametrization. The variance expressions are compared with the
open-loop situation, and evaluated in terms of their relevance for subsequent model-
based control design. Additionally it is specified what is the optimal experimental
situation in identification (open-loop or closed-loop), in view of the variance of the
resulting model-based controller.
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1. INTRODUCTION

When identifying dynamic models for the specific pur-
pose of subsequent model-based control design it is ar-
gued that a closed-loop experimental setup during the
identification experiments supports the construction of
an identified model that is particularly accurate in that
frequency region that is relevant for the control design.
This mechanism which plays a major role in many con-
tributions in the area of “identification for control”, has
been motivated mainly on the basis of bias considera-
tions in the form of a “control-relevant” distribution of
the bias over frequency (Gevers, 1993; Van den Hof and
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Schrama, 1995). Recently it has been shown in Hjal-
marsson et al. (1996), that for a particular class of con-
trol design methods, also from a variance point of view
closed-loop experiments are preferred over open-loop ones.
In this paper we will first present the asymptotic vari-
ance expressions for identified models based on several
different closed-loop identification methods, including
the recently introduced indirect methods using a co-
prime factor model representation (Van den Hof et al.,
1995) and the method employing a so-called dual Youla/
Kucera parametrization (Hansen and Franklin, 1988).
The results for the classical ’direct’ method (Ljung, 1993)
are extended to also include variance expressions for the
estimated noise model, while they are shown to remain
the same for the mentioned alternative indirect meth-
ods. Consequences are shown for the variance of re-
sulting model-based controllers for several types of con-
troller designs.
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2. PRELIMINARIES

We will consider the closed-loop configuration as de-
picted in Fig. 1, where G0 and C are linear time-invariant,
possibly unstable, finite dimensional systems, with G0

strictly proper, while C is a stabilizing controller for
G0; e is a white noise process with variance λ0, and H0

a stable and stably invertible monic transfer function.
Signals r1 and r2 are external reference signals that are
possibly available from measurements. For purpose of
efficient notation, we will often deal with the signal

r(t) := r1(t) + C(q)r2(t)

being the result of external excitation through either r1

or r2. Additionally we will denote: u(t) = ur(t) + ue(t)
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Fig. 1. Closed-loop configuration.

with ur(t) := S0(q)r(t),

ue(t) := −C(q)S0(q)H0(q)e(t),

where the sensitivity function S0 is given by S0(q) :=
[1 + C(q)G0(q)]−1. For the corresponding spectra it fol-
lows that Φu = Φr

u + Φe
u with

Φr
u = |S0|2Φr and Φe

u = |CS0|2Φv. (1)

The arguments q and eiω will be omitted when appro-
priate. We will consider parametrized models G(q, θ) for
G0 and H(q, θ) for H0 with θ ∈ Θ, and we will use
expressions S ∈ M and G0 ∈ G to indicate the situa-
tions that both G0 and H0 or only G0 can be modelled
exactly within the model set. The variance expressions
that are considered in this paper are asymptotic in both
n (model order) and N (number of data), while n/N is
supposed to tend to 0, as in the standard framework of
Ljung (1987).

3. DIRECT IDENTIFICATION

The direct method of closed-loop identification is char-
acterized by θ̂N = argminθ

1
N

∑N−1
t=0 ε(t, θ)2 with

ε(t, θ) = H(q, θ)−1[y(t) − G(q, θ)u(t)]. (2)

An expression for the asymptotic variance of the transfer
function estimate can be given for the situation that S ∈

M, and both plant model and noise are estimated. In
this case (Ljung, 1987):

cov

(
Ĝ(eiω)
Ĥ(eiω)

)
∼ n

N
Φv(ω) ·

[
Φu(ω) Φeu(ω)
Φue(ω) λ0

]−1

.

With the relation Φue = −CS0H0λ0 and using the fact
that Φuλ0 − |Φue|2 = λ0Φr

u it follows that

cov

(
Ĝ

Ĥ

)
∼ n

N

Φv

Φr
u

·
⎡
⎣ 1 (CS0H0)∗

CS0H0
Φu

λ0

⎤
⎦ . (3)

The variance expressions for Ĝ and Ĥ then become:

cov(Ĝ)∼ n

N

Φv

Φr
u

=
n

N

Φv

Φu
[1 +

Φe
u

Φr
u

] (4)

cov(Ĥ)∼ n

N

Φv

λ0

Φu

Φr
u

=
n

N

Φv

λ0
[1 +

Φe
u

Φr
u

]. (5)

The case of an open-loop experimental situation now
appears as a special situation in which Φe

u = 0, Φr
u =

Φu, and C = 0, leading to the well known expressions

cov(Ĝ) ∼ n

N

Φv

Φu
cov(Ĥ) ∼ n

N

Φv

λ0
.

As indicated in Ljung (1993), the closed-loop expres-
sions show that only the noisefree part ur of the input
signal contributes to variance reduction of the estimates.
The given expressions are restricted to the situation that
S ∈ M and that both G(θ) and H(θ) are identified.

Remark 3.1. The situation of estimating a plant model
in the situation G0 ∈ G and having a fixed and correct
noise model H∗ = H0 is considered in Ljung (1993) and
is shown to be given by cov(Ĝ) ∼ n

N
Φv

Φu
. This is a smaller

variance than the situation in which both G and H are
estimated.

4. INDIRECT IDENTIFICATION

4.1 Introduction

Recently several different indirect approaches to closed-
loop identification have been presented, see e.g. Gevers
(1993) and Van den Hof and Schrama (1995). These
methods have been introduced from considerations re-
lated to the bias that occurs in closed-loop identification
of approximate models. Here we will briefly illustrate
their properties with respect to the variance of the esti-
mates.

4.2 Coprime factor identification

Coprime factor identification is treated in detail in Van
den Hof et al. (1995). It is a scheme that relates to (and



generalizes) the classical joint input/output method of
closed-loop identification as e.g. described in Gustavs-
son et al. (1977). It does not require knowledge of the
implemented controller C.
The basic principle is that the (two-times-two) transfer
function (r, e)T → (y, u)T is identified, while the plant
models (Ĝ, Ĥ) are retrieved from these closed-loop esti-
mates. Consider the system’s relations, using a filtered
signal x(t) := F (q)r(t):

y(t) = N0,F x(t) + S0H0e(t) (6)

u(t) = D0,F x(t) − CS0H0e(t) (7)

with N0,F := G0S0F
−1 and D0,F := S0F

−1, consti-
tuting a coprime factor representation of G0 as G0 =
N0,F D−1

0,F .
The linear and stable filter F can be chosen by the
user to serve several purposes, like minimal order prop-
erties or normalization of the coprime factorization as
discussed in Van den Hof et al. (1995); this will not be
pursued here any further as it is immaterial for the vari-
ance analysis. The important observation here is that
the signals x and e are uncorrelated. Identification of the
4 transfer functions in (6),(7) from the signals x(t), y(t),
u(t) therefore corresponds to a one-input two-output
open-loop identification problem. Denote

εy(t, θ) = Wy(q, θ)−1[y(t) − N(q, θ)x(t)]

εu(t, θ) = Wu(q, θ)−1[y(t) − D(q, θ)x(t)];

Least squares minimization of (εy, εu)T provides esti-
mated models N̂ , D̂, Ŵy, Ŵu.
Open-loop models Ĝ and Ĥ are then retrieved by

Ĝ = N̂(D̂)−1

Ĥ = (1 + CĜ)Ŵy.

For the variance of Ĝ and Ĥ, use can be made of first
order approximations: Ĝ = G0 + ΔG, N̂ = N0,F + ΔN ,
D̂ = D0,F + ΔD etcetera, leading to

ΔG =
ΔN

D0,F
− N0,F ΔD

D2
0,F

(8)

ΔH = (1 + CG0)ΔWy + C(ΔG)Wy .

This leads to the result:

cov

(
Ĝ

Ĥ

)
∼ n

N

Φv

Φr
u

·
⎡
⎣ 1 (CS0H0)∗

CS0H0
Φu

λ0

⎤
⎦ . (9)

A sketch of the derivation of this result is given in the
Appendix. Note that (9) is identical to expression (3)
for direct identification .

4.3 Identification in a dual Youla-Kucera parametrization

Another method that has recently been introduced uti-
lizes a specific parametrization of the plant G0. As C
stabilizes the plant, G0 can be parametrized within the
class of all plants that are stabilized by C. This param-
etrization involves the relation

G(θ) =
Nx + DcR(θ)
Dx − NcR(θ)

(10)

where Nx/Dx =: Gx is any (auxiliary) system that is
stabilized by C; Nc/Dc = C, and R(θ) ranges over the
class of all stable proper transfer functions. The differ-
ent factors that build up the quotient expressions Gx

and C are required to be stable and coprime.
Using an expression like (10) for the plant G0 with a
Youla-Kucera parameter R0, and substituting this in
the system’s relations, shows -after some manipulations-
that these can be rewritten as

z(t) = R0x(t) + W0e(t)

with R0 = DxS0(G0 − Gx)/Dc, W0 = H0S0/Dc, and

z = (Dc + GxNc)−1(y − Gxu)

x = (Dx + CNx)−1r.

Since x is not correlated with e, the identification of R0

and W0 can again be considered as an open-loop identifi-
cation problem. The signals z and x can be constructed
by the user, as they are dependent on known quanti-
ties and measured signals. Least-squares identification
is performed on the basis of the prediction error

εz(t, θ) = W (q, θ)−1[z(t) − R(q, θ)x(t)]

and the estimated transfers are denoted by Ŵ and R̂.
The open-loop model can then be reconstructed from
these estimates according to

Ĝ =
Nx + DcR̂

Dx − NcR̂
(11)

Ĥ = ŴDcŜ
−1 = ŴDc[1 + CĜ]. (12)

In order to guarantee that Ĥ is monic it will assumed
that Dc is monic.
Variance expressions for R̂ and Ŵ are available through
the standard (open-loop) expressions:

cov(R̂) ∼ n

N

|W0|2λ0

Φx
and cov(Ŵ ) ∼ n

N
|W0|2

while cov(R̂, Ŵ ) = 0. In a similar way as in section 4.2,
the variance of (Ĝ, Ĥ) can be obtained, relying on first
order approximating expressions. Not surprisingly (see
Appendix) the resulting expressions are again given by
(9).



Further details on this identification method can be found
in and Van den Hof and Schrama (1995). It can be shown
that it is a direct generalization of the classical indirect
method of closed-loop identification, see Van den Hof
and De Callafon (1996).

4.4 Two-stage method

A two-stage method for closed-loop identification has
been introduced in Van den Hof and Schrama (1993). It
operates directly on reference, input and output data,
and does not require knowledge of the implemented con-
troller. It can best be explained by considering the sys-
tem’s relations:

y(t) = G0u
r(t) + S0H0e(t)

u(t) = S0r(t) − CS0H0e(t).

In the first step, measured signals r and u are used to
estimate a model Ŝ of the sensitivity function S0. Next
this model is used to construct (by simulation) an es-
timate ûr of ur according to ûr(t) = Ŝ(q)r(t). In the
second stage, the signals ûr and y are used as a basis
for the identification of a plant model Ĝ.
The procedure is very much alike the coprime factor
identification scheme, albeit that the final plant model is
not calculated through division of two identified models;
this division is circumvented by constructing the auxil-
iary simulated signal ûr = S(q, γ̂)r.
Consider the prediction errors

εy(t, θ, γ) = W−1
y [y(t) − G(q, θ)S(q, γ)r(t)]

εu(t, γ) = W−1
u [u(t) − S(q, γ)r(t)]

then the parameter estimate θ̂N of this method can be
written as the minimizing argument of VN (λ) for λ →
∞, with

VN (λ) =
1
N

N∑
t=1

[
1
λ

ε2
y(t, θ, γ) + ·ε2

u(t, γ)]

(Note that for λ → ∞, γ̂ will be determined fully on the
basis of r and u). Applying the coprime factor results
from section 4.2 to this situation then shows that the
variance results are equivalent, and independent of λ. 3

4.5 Summarizing comments

For the considered indirect methods, the asymptotic
variance expressions for plant and noise model are ex-
actly the same as the expressions for direct identifica-
tion. This may not be too surprising, as similar results

3 The authors acknowledge the contribution of Urban Forssell
(Univ. Linköping) to the proof of this result.

for the classical indirect and joint i/o methods were al-
ready available (Gustavsson et al., 1977). However what
has to be stressed here, is that for the indirect type
methods the variance expressions for Ĝ are valid also in
the situation that G0 ∈ G but S /∈ M, while for the
direct method the results are only achieved under the
stronger condition that S ∈ M.

5. OPEN-LOOP VERSUS CLOSED-LOOP
EXPERIMENTS

Considering that the variance expressions are identical
for all closed-loop identification methods, we can now
make a comparison between the variances obtained from
open-loop and closed-loop experimental conditions. The
appropriate expressions are summarized in table 1.

Open-loop Closed-loop

V ar(ĜN )
n

N

Φv

Φu
<

n

N

Φv

Φr
u

V ar(ĤN )
n

N

Φv

λ0
<

n

N

Φv

λ0

(
1 +

Φe
u

Φr
u

)

Table 1. Variance expressions under open-
loop and closed-loop conditions.

The results show that for both Ĝ and Ĥ the variance
obtained under closed-loop identification will generally
be larger than for open-loop identification. Particularly
in a situation where the input power is limited, the dif-
ference will become apparent, as in that case only part
of the actual input spectrum can be used for variance
reduction of Ĝ and Ĥ . In case the input power is not re-
stricted, closed-loop identification can achieve the same
results as open-loop identification, by choosing a refer-
ence signal r such that Φr

u is equal to the input spectrum
applied in the open-loop situation.

The results suggest that in terms of variance of the
model estimates ĜN and ĤN , open-loop identification
always has to be preferred over closed-loop identifica-
tion. However, perhaps surprisingly, this is not the case
if the objective of the identification is model-based con-
trol design, as is explained in the next section.

6. OPTIMAL EXPERIMENTS IN VIEW OF
MODEL-BASED CONTROL

In this section we will consider the situation that the
identified transfer functions ĜN and ĤN are used as a
basis for model-based control design, and we will illus-
trate the effect of the variance of the identified model
on the model application, i.e. the designed controller.
To this end we will first consider the following result
from Ljung (1987, Theorem 14.3).



Proposition 6.1. Consider the variance-based identifica-
tion design criterion

J(D) =

π∫
−π

tr[P (ω,D)Γ(ω)]dω

where P (ω,D) = cov[Ĝ(eiω) Ĥ(eiω)]T , D denotes the
design choices with respect to the experimental condi-
tions, represented by {Φu, Φue}, while Γ(ω) is a 2 × 2
Hermitian matrix reflecting the intended application of
the model.
If Γ12(ω) ≡ 0 and the input power is limited, then the
experimental condition D for which J(D) is optimized
is given by

Φopt
u = c ·

√
Γ11(ω)Φv(ω) Φopt

ue ≡ 0

and c is a constant. �

This result shows that open-loop identification is op-
timal when in the intended model application, the co-
variance between Ĝ and Ĥ is not penalized, but only
the variance contributions of Ĝ and Ĥ separately. This
situation applies e.g. to the case where a controller is
designed on the basis of Ĝ only.

Corollary 6.2. Consider as model application a control
design scheme based on a frequency weighted sensitivity
minimization:

CĜ = argmin
C̃

‖V (1 + C̃Ĝ)−1‖2.

Then the optimal experiment design in line with the
above proposition is given by

• open-loop experiments (Φopt
ue ≡ 0).

• Φopt
u = c · |CĜV S2

0 |
√

Φv

Proof. The application-related error criterion can be writ-
ten as ‖V [(1 + CG0)−1 − (1 + CĜ)−1]‖2 which can be
shown to be equal to (using first order approximations)
‖V C(G0−Ĝ)

(1+CG0)2
‖2. An appropriate choice of Γ11 for this model

application would thus be Γ11(ω) = |V C|2
|1+CG0|4 leading to

the result presented. �

From the above result one could conclude that -from a
variance point of view- open-loop identification is opti-
mal for this control design. However, the required input
spectrum in this ‘open-loop’ situation should be pro-
portional to the sensitivity function S0 of the real plant,
being controlled by the yet-to-be-designed controller. In-
put shaping with S0 is exactly what is done in closed-
loop identification, since Φu = |S0|2Φr + Φe

u.

A second related result is present in the recent work
of Hjalmarsson et al.(1996) on optimal identification for

control. In this work the identification criterion is se-
lected to minimize the control performance degradation
that results from the random errors on ĜN and ĤN .
In solving this problem, the authors have quantified the
variance error on the designed model-based controller.

Consider a situation where an identified model ĜN , ĤN

is obtained from a closed-loop experimental situation
with a controller Cid implemented on the plant. Con-
sider a model-based control design scheme

ĈN = c(ĜN , ĤN )

and let FG, FH reflect the derivatives of c with respect to
G, H , i.e. the sensitivity of the controller with respect to
changes in G and H . Then the variance of the controller
estimate is (see Hjalmarsson et al., 1996)

cov(ĈN ) ∼ n

N
|H0|2·{

|FH |2 +
λ0

Φr
|FG + (FGG0 + FHH0)Cid|2

}

leading to the following situations.

Situation FH �= 0. The controller variance is minimized
for models identified in closed-loop with an implemented
controller Copt

id unequal to zero, and the resulting con-
troller variance is

cov(ĈN ) ∼ n

N
|H0|2|FH |2.

By comparison, the controller variance obtained with
open-loop identification is

cov(ĈN ) ∼ n

N
|H0|2|FH |2

(
1 +

|FG|2
|FH |2 · λ0

Φu

)
.

We observe that the variance obtained under ideal closed-
loop experimental conditions can only be achieved with
open-loop identification if the input power is made infi-
nite.

Situation FH = 0. The variance expression becomes

cov(ĈN )∼ n

N
|H0|2|FG|2 |1 + CidG0|2λ0

Φr
=

n

N

Φv

Φr
u

|FG|2.

The corresponding expression for open-loop identifica-
tion is

cov(ĈN ) ∼ n

N

Φv

Φu
|FG|2.

The situation FH = 0 means that the control design
depends only on G and not on the noise model. This
result is therefore consistent with Corollary 6.2.

We conclude from this analysis that, as far as variance
errors are concerned, for model-based control design,
closed-loop identification is optimal except when the
controller is independent of the noise model.



7. CONCLUSIONS

Asymptotic variance expressions have been derived for
several closed-loop identification schemes, involving both
the (classical) direct method and more recently intro-
duced indirect identification methods. It is shown that
the several approaches lead to the same asymptotic vari-
ance. Although asymptotic variance of plant model and
noise model generally will increase when performing
closed-loop identification, in comparison with open-loop
identification, closed-loop identification can still be pre-
ferred when the identified model is used as a basis for
control design. In the case that a controller is designed
on the basis of both plant model and noise model, closed-
loop identification is shown to lead to better variance
results.

APPENDIX

Proof of (9).
Applying the standard variance expressions to the mul-
tivariable situation of (6),(7) it follows that

cov

(
N̂

D̂

)
∼ n

N

|S0|2Φv

Φx

[
1 −C∗

−C |C|2
]

(A.1)

cov

(
Ŵy

Ŵu

)
∼ n

N

|S0|2Φv

λ0

[
1 −C∗

−C |C|2
]

. (A.2)

Since (6),(7) reflect an open-loop situation (as x and e
are uncorrelated) this implies that the cross-covariance
terms between (N̂ , D̂)T and (Ŵy, Ŵu) are zero. From the
first order approximations in (8) it follows that |ΔG|2 =

|ΔN |2
|D0,F |2 +

|G0|2
|D0,F |2 |ΔD|2 − 2Re

{
G0(ΔD)(ΔN)∗

|D0,F |2
}

.

Substitution of (A.1) then provides the result for cov(Ĝ).
For Ĥ one can similarly write (when neglecting terms
that have expectation 0):

|ΔH |2 = |1 + CG0|2|ΔWy |2 + |CWy|2|ΔG|2 (A.3)

and the result for cov(Ĥ) follows after substitution of
(A.2). The expression for cov(Ĝ, Ĥ) follows from
cov(Ĝ, Ĥ) = −(CWy)∗ cov(Ĝ).

Variance result for dual Youla-Kucera method
Using (11),(12) the related expressions for the first order
approximation errors become

ΔG =
(Dx − NcR0)Dc(ΔR) + (Nx + DcR0)Nc(ΔR)

(Dx − NcR0)2

ΔH =
Dc(ΔW )

S0
+ W0Nc(ΔG). (A.4)

For ΔG this leads to

ΔG =
Dc + G0Nc

Dx − NcR0
ΔR =

Dc(ΔR)
DxS2

0(1 + CGx)

and so
cov(Ĝ) =

∣∣∣∣ Dc

DxS2
0(1 + CGx)

∣∣∣∣
2

cov(R̂).

Substituting the expression for cov(R̂) and using the
property that Φx = |Dx(1 + CGx)|2Φr it follows after
some manipulation that cov(Ĝ) ∼ n/N · Φv/Φr

u.
For cov(Ĥ) it follows from (A.4) that

cov(Ĥ) =
|Dc|2covŴ

|S0|2 + |NcW0|2covĜ.

Substituting the known expressions in the right hand
side, will show that cov(Ĥ) ∼ n/N |H0|2[1 + Φe

u/Φr
u].

For cov(Ĝ, Ĥ) it follows from (A.4) that cov(Ĝ, Ĥ) =
(W0Nc)∗cov(Ĝ) which leads to the appropriate result.
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