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Abstract: In prediction error identification model uncertainty bounds are generally
derived from the statistical properties of the parameter estimator, i.e. asymptotic
normal distribution of the estimator, and availability of the covariance information.
When the primal interest of the identification is in a-posteriori quantifying the
uncertainty in an estimated parameter, alternative parameter confidence bounds
can be constructed. Probabilistic parameter confidence bounds are studied for
ARX models which are generated by computationally more simple expressions, and
which have the potential of being less dependent on asymptotic approximations
and assumptions. It is illustrated that the alternative bounds can be powerful for
quantifying parameter confidence regions for finite-time situations.
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1. INTRODUCTION

In the mainstream approach of system identifica-
tion, i.e. prediction error identification, model un-
certainty quantification is based on the covariance
matrix of the parameter estimator, in conjunction
with a presumed (or asymptotically achieved if the
number of data tends to infinity) Gaussian prob-
ability density function, see e.g., (Ljung, 1999b).
This description leads to probabilistic confidence
bounds on estimated parameters, from which also
probabilistic confidence bounds on estimated fre-
quency responses can be constructed, with any
pre-chosen level of probability.

1 Now with Shell International Exploration and Produc-
tion, Rijswijk, The Netherlands.
2 Corresponding author.
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ssical prediction error identification explicit
xact expressions for the parameter covari-
matrix are available for model structures
re linear-in-the-parameters in the situation
the model structures are correct, i.e. the
generating system is part of the model set,

. For linear regression models with deter-
tic regressors (such as FIR and generalized
Heuberger et al., 2005)) this holds for finite
length; for ARX models this holds asymp-
lly. For general model structures, and under
sumption S ∈ M, the parameter covariance
x can be approximated by using first order
r expansions. However, in this situation ex-
stem knowledge is also required to compute
approximate expressions for the covariance
x.



Only in case of linear parametrizations results are
available for model uncertainty bounding when
the model structures are not correct (S /∈ M),
see e.g. Hakvoort and Van den Hof (1997), Ljung
(1999a) and Heuberger et al. (2005), Chapter 7.
For Gaussian distributions parameter confidence
bounds that are constructed on the basis of the
(exact) covariance matrix of the parameter esti-
mator, lead to the smallest possible parameter
uncertainty regions for a given probability level.
However, usually the exact covariance matrix is
not available, and a replacement has to be made
with an estimated covariance.
In this paper, some alternatives are studied, where
the aim is to specify parameter uncertainty re-
gions that do not (or at least not as much) rely
on asymptotic assumptions but for which exact
probabilistic expressions can be made. It will be
shown that the quantification of parameter uncer-
tainty on the basis of only one experiment can be
done without the full analysis of the parameter
estimator. This will be shown to facilitate uncer-
tainty bounding in several ways, as well as give
rise to results that show potentials for applica-
tion in finite-time analysis. Finite-time analysis
of estimated parameters is an important problem,
however with few results so far. For some results
see e.g. Campi and Weyer (2002) and Weyer and
Campi (2002).
After presenting the principle concepts of the
paradigm that was introduced in Douma and Van
den Hof (2005), parameter uncertainty regions are
derived for ARX models, for the situation that
S ∈ M. The presented approach can also be
applied to nonlinearly parametrized models, as
well as to the situation S /∈ M along the lines as
presented in Douma and Van den Hof (2005). Due
to space limitations this is reported elsewhere, see
e.g. (Douma, 2006).

2. ESTIMATOR PROPERTIES AND
UNCERTAINTY REGIONS

It is standard practice to base the characterization
of the quality of a parameter estimate θ̂ on the
(statistical) properties of the estimator, where the
estimator is defined as a mapping:

θ = g(z)

where z indicates the measurements. Boldface
symbols are generally used to distinguish random
variables from realizations thereof. The classical
way of arriving at a model uncertainty bound is:

• Assume knowledge of the pdf pθ(θ) of θ,
given by prior information and/or by appli-
cation of the Central Limit Theorem;

• Assume that the estimator is unbiased, i.e.
θ0 = Eθ;
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hen knowing that every estimate θ̂ is a
ealization of the random variable with pdf
θ(θ), this pdf with expected value θ0 can
e used to statistically bound the difference
θ̂ − θ0|.
iven this statistic, construct an uncertainty

egion for θ0 composed of all θ for which |θ̂−
| satisfies the α-bound of the test statistic
hypothesis-test).

g in mind this classical way of determining
tainty bounds, the following example is con-
d (Douma and Van den Hof, 2005).

ple 1. Consider the data generating system
θ0x1 + x2, and one available measurement
} of y and x1. It is given that x1 and x2 are
ian distributed and correlated. We consider
llowing estimator for θ0:

θ =
y
x1

. (1)

r the above conditions the estimator (1)
es

θ =
y
x1

= θ0 +
x2

x1
. (2)

x1 and x2 are correlated, the probability
y function of this estimator will generally
e Gaussian 3 . Therefore, evaluation of pa-
er uncertainty regions on the basis of pθ will
ally be cumbersome.
ver since x1(θ − θ0) = x2, and a particu-
ir x1, θ̂ is available from the measurement
), it can easily be verified that

x1(θ̂ − θ0) = x2 (3)

the term on the right hand side is unknown.
the prior information that x2 is a realization
random variable x2 it simply follows that

θ0)x2
1(θ̂ − θ0) ≤ σ2

x2
cχ(α, 1) w.p. α, (4)

cχ(α, 1) corresponds to a probability level
he Chi-squared distribution with one degree
edom, i.e. the α probability region under a
imensional Gaussian distribution.
the distribution of the right hand side of (3)
wn, we now consider the test statistic

x1(θ̂ − θ̃)

elect all the values of θ̃ that lead to an
θ̃) that is within the α probability level of

aussian distribution of x2. This set is exactly
by

α, θ̂) =
{

θ |x1(θ̂ − θ)|2 ≤ σ2
x2

cχ(α, 1)
}

(5)

holds that

θ0 ∈ D(α, θ̂) w.p. α.

nterpretation of this probabilistic expression
t when we construct the uncertainty region

plotted in Figure 1 for x2 ∈ N (0, 2) and x1 = 3+ 0.5
x2



D(α, θ̂) for n experiments, i.e. n realizations of x1

and x2, the constructed region (5) will contain
the true parameter only a number of αn times if
n → ∞.

The result for Example 1 is sketched in Figure
1. In the classical approach the parameter un-
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Fig. 1. Probability density function of θ (example
1) and three uncertainty regions each cor-
responding to a probability of α = .9. The
symmetric and smallest 90% regions are tied
to the pdf of θ. The computed 90% region
Df−1(x2)(α, 0) corresponds to all θ̂ for which
θ0 ∈ D(α, θ̂). This region is based on a 90%
probability region of random variable x2.

certainty region is determined on the basis of Eθ̂
and cov(θ̂). For a Gaussian distribution one then
arrives at the smallest possible parameter uncer-
tainty regions corresponding to a fixed probability
level. However the above quantities need to be
known. The alternative paradigm does not require
full analysis of the pdf of the parameter estimator,
at the possible cost of delivering larger parameter
uncertainty sets, but with exact probabilistic ex-
pressions connected to it. In the next section it
will be shown how the presented approach can be
applied to ARX models.

3. ARX MODELLING

In prediction error identification with ARX mod-
els a one-step-ahead predictor is considered of the
format

ŷ(t|t − 1; θ) = ϕT (t)θ (6)

with ϕT (t) = [−y(t−1) · · ·−y(t−na) u(t) · · ·u(t−
nb + 1)], and θT = [a1 · · · ana

b0 · · · bnb−1], both
having dimensions n = na + nb. The parameter
estimate is obtained by minimizing the quadratic
prediction error criterion

θ̂N = arg min
θ

VN (θ); VN (θ) =
1
N

N∑
t=1

ε(t, θ)2

with ε
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(t, θ) = y(t) − ŷ(t|t − 1; θ). By denoting

=

⎛
⎜⎝

ϕT (1)
...

ϕT (N)

⎞
⎟⎠ and y = [y(1) · · · y(N)]T

ows that θ̂N = (ΦT Φ)−1ΦT y.
data generating system belongs to the model
(S ∈ M) then it holds that y = Φθ0 + e
an N -vector of samples from a white noise

ss, and so

θ̂N = θ0 + (ΦT Φ)−1ΦT e. (7)

lassical approach

analyzing the statistical properties of the
ator, it is generally derived 4 that, for N →

√
N(θ̂N − θ0) → N (0, Parx)

x = (E[
1
N

ΦT Φ])−1 · Q · (E[
1
N

ΦT Φ])−1 (8)

Q = E[ 1
N ΦT Φ] · σ2

e and σ2
e the variance of

hite noise, leading to

Parx = (E[
1
N

ΦT Φ])−1 · σ2
e . (9)

leads to the expression that, asymptotically
θ0 ∈ Darx(α, θ̂N ) w.p. α, with

arx(α, θ̂N ) :=

θ | (θ − θ̂N )T P−1
arx(θ − θ̂N ) ≤ cχ(α, n)

N
}.

f the problems in the latter expression is that
annot be computed, since σ2

e and E[ 1
N ΦT Φ]

ot available directly. Therefore in practice,
xact covariance matrix Parx is commonly
ed by an estimate

P̂arx =
1
N

ΦT Φ · σ̂2
e , (10)

the estimate σ̂2
e is usually determined on

sis of ε2(t, θ̂N ).

ew approach

atively we can use expression (7) to analyze
pression

β :=
1√
N

ΦT Φ(θ̂N − θ0) =
1√
N

ΦT e.

nknown term on the right hand side of the
ion is known to satisfy

1√
N

ΦT e ∈ N (0, Q), Q = E[
1
N

ΦT Φ]σ2
e

this derivation it is required that both the terms

)−1 and ΦT e as well as their product converge

surely.



where the Gaussian distribution is reached asymp-
totically in N as a result of the Central Limit
Theorem.
For realizations of β = 1√

N
ΦT e, the following

uncertainty bound can be specified asymptotically
in N :

β ∈ Dβ(α, 0) w.p.α, with

Dβ(α, 0) :=
{
β | βT Q−1β ≤ cχ(α, n)

}
As this probabilistic expression is also valid for
the particular estimate β = 1√

N
ΦT Φ(θ̂N − θ0) on

the basis of one single experiment, it follows that

(θ̂N − θ0)T 1
N

ΦT ΦQ−1 1
N

ΦT Φ(θ̂N − θ0) ≤

≤ cχ(α, n)
N

w.p. α

and consequently

θ0 ∈ Darx(α, θ̂N ) w.p. α, with

Darx(α, θ̂N ) := (11)

{θ | (θ − θ̂N )T P−1
arx,n(θ − θ̂N ) ≤ cχ(α, n)

N
}

with

Parx,n = (
1
N

ΦT Φ)−1Q(
1
N

ΦT Φ)−1. (12)

Note that this expression is very close to the
classical expression (8). However the two expected
value expressions in this equation are simply
replaced by computable data-based expressions.
The current expression only requires the a.s. con-
vergence of 1√

N
ΦT e. Again, as in the classical

case, since σ2
e and E[ 1

N ΦT Φ] are unknown, they
are replaced by their estimates σ̂2

e and 1
N ΦT Φ,

leading to (11) with

P̂arx,n = (
1
N

ΦT Φ)−1σ̂2
e . (13)

Whereas in the classical approach Parx has the
interpretation of covariance matrix of the parame-
ter estimator, this interpretation is not applicable
to the matrix Parx,n. The latter expression only
serves as a basis for the parameter uncertainty
region.

3.3 Evaluation

In its implementable form (13) the alternative
approach is seen to result in exactly the same
uncertainty region as is practically used in the
classical approach (10), based on the theoretical
result (8). However, when comparing the two the-
oretical expressions (8) and (12) it appears that,
besides the replacement of σ2

e by an estimate, the
latter approach requires only the replacement of
Q by a computable estimate, while the former
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es three substitutions to be made. Sum-
ing, through the new paradigm the com-
used uncertainty region based on (10) has

nger theoretical support than is generally
wledged.
rms of satisfying the (asymptotic) Gaus-
distribution of the test statistic, it seems
ult from Monte Carlo simulations that the

1√
N

ΦT e becomes Gaussian even for very

data length N . The term (ΦT Φ)−1ΦT e in
andard approach generally requires a longer
length to approximate the Gaussian distri-
.
asily verified that the set (11) with (12) is
meter uncertainty set that can equivalently

scribed by those values of θ that satisfy

VN (θ) − VN (θ̂) ≤ cχ(α, n)/N.

relates to the so-called likelihood method
ntifying parameter uncertainty (Donaldson
chnabel, 1987).

EXTENSION OF THE ARX RESULTS

robabilistic expressions in the previous sec-
are based on the statistical properties of the
ssion β := 1√

N
ΦT e. In order to further iso-

e role of the noise distribution, the following
a will appear to be instrumental. A proof is
in the Appendix.

a 1. Consider random vectors z, e ∈ R
N×1

random matrix V ∈ R
N×N related through

z = VT e.

following properties are satisfied:

has independent identical Gaussian dis-
ributed entries, N (0, σ2), and
and V are independent, and
is unitary, i.e. VT V = I

the vector elements of z are independent
cally distributed with Gaussian distribution
σ2). �

esult of this Lemma is quite remarkable.
ective of the pdf of the elements of matrix
e resulting random variable z has a Gaussian
ution. We can now formulate the following
that is relevant for ARX models.

sition 1. Given a random matrix Φ ∈ R
N×n

random vector e ∈ R
N×1. The vector e con-

independent identically distributed Gaus-
andom variables with distribution N (0, σ2).
nd e are statistically independent, then for
realization (z,Φ) of the random variables
with

z := (ΦT Φ)−1ΦT e



it holds that

zT (ΦT Φ)z ≤ cχ(α, n) is true w.p. α.

This result is exact for all values of N .

Proof Utilizing the singular value decomposition
of ΦT : ΦT = UΣVT , with UT U = VT V = I, it
follows that ΦT Φz = UΣVT e.
We now denote

β := Σ−1UT ΦT Φz = VT e. (14)

If V and e are independent (upon assumption)
then according to Lemma 1 β ∈ N (0, σ2In) and
consequently for every realization β corresponding
to (z,Φ) with Φ = UΣV T it follows that

βT β ≤ cχ(α, n) w.p. α.

Substituting β in the left hand side then delivers

zT ΦT ΦUΣ−1Σ−1UT ΦT Φz

which by using ΦT Φ = UΣ2UT , simplifies to
zT (ΦT Φ)z which proves the result. �

When applying Proposition 1 to estimated ARX
models, the suggested consequence is that for all
N with probability α:

(θ̂N − θ0)T 1
N

ΦT Φ(θ̂N − θ0) ≤ cχ(α, n)
N

and consequently θ0 ∈ D(α, θ̂N ), w.p. α,

with D(α, θ̂N ) := (15)

{θ | (θ − θ̂N )T 1
N

ΦT Φ(θ − θ̂N ) ≤ cχ(α, n)
N

}.

This - very strong looking - result however is not
exactly true, due to the fact that Proposition 1
requires statistical independence of V and e, a
condition that is not satisfied for ARX models.
However in many situations it appears that failure
to meet this condition hardly affects the Gaussian
character of the test statistic β. This is illustrated
in the following example.

Example 2. A first-order data generating system
is modelled with an ARX model of the form

ε(t, θ) = (1 + θfq−1)y(t) + θbu(t),

such that S ∈ M. Experimental data is simulated
driving the data-generating system with an input
u(t) and noise disturbance e(t) that are indepen-
dent Gaussian distributed white noise sequences
with variance σ2

u = σ2
e = 1. The system coeffi-

cients are θb = 0.5, θf = 0.9. The parameters θb

and θf are estimated with a least-squares identi-
fication criterion.
The top of Figure 2 depicts the histogram of
the second element of (ΦT Φ)ΦT e corresponding
with θ̂b as a function of data length N and for
5000 Monte Carlo simulations. It is the empirical
distribution of the test statistic, related to the
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al ARX estimate (7). The bottom depicts
istribution of the second element of VT e,
the empirical distribution related to the test
tic (14). Clearly, the bottom row is indistin-
ble from the Gaussian distribution, while
p approaches the Gaussian slowly. Similar
s are presented in Figure 3 for the first
nts of the parameter vector, corresponding
f̂ . Clearly, the bottom row is indistinguish-

rom the Gaussian distribution, while the top
aches the Gaussian distribution very slowly.

0 500

N = 2

0 2

-2 0 2

N = 5

-2 0 2

-1 0 1

N = 25

-2 0 2

-0.5 0 0.5

N = 50

-2 0 2

. Distribution of parameters in ARX struc-
ure. Top: second element of (ΦT Φ)−1ΦT e
orresponding to θ̂b for data length N =
, 5, 25, 50. Bottom: the distribution of the
econd element of VT e corresponding to θ̂b.

0 200

N = 2

0 2

-2 0 2

N = 5

-2 0 2

-0.4 0 0.4

N = 25

-2 0 2

-0.2 0 0.2

N = 50

-2 0 2

. Similar simulation results as in Figure 2
ut then for the test statistic related to the
enominator parameter θ̂f .

esults of the example suggest that the exist-
rrelation between V and e hardly affects the
lity of the test statistic. This would allow

ply the Gaussian distribution to finite time
s. The interesting thing is that -along the
ketched in Douma and Van den Hof (2005)
r results can be obtained for (nonlinearly
etrized) Output Error model structures.



5. CONCLUSIONS

The standard approach of formulating probabilis-
tic parameter bounds on the basis of the sta-
tistical properties of the parameter estimator is
discussed. Alternative approaches are presented
that lead to exact probabilistic parameter bound-
ing expressions for ARX models. Remarkably this
alternative reasoning leads to bounding expres-
sions that are similar to the current -implemented-
expressions, in which unknown quantities in the
theoretical expressions are replaces by data-based
estimates. A particular ARX result is presented
that suggests the applicability of the parameter
bounding approach to finite-time data. This sug-
gestion, supported by simulation results, will need
to be substantiated in future work. Applicability
of similar approaches to nonlinearly parametrized
(Output Error) model structures is presented else-
where.
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ium on Control (B. Wittenmark and
. Rantzer, Eds.). Studentlitteratur. Lund,
weden. pp. 15–42.
, L. (1999b). System Identification — The-
ry for the User, second ed. Prentice-Hall,
pper Saddle River, NJ.
ley, M.B. (1981). Spectral Analysis and
ime Series. Acad. Press, London, UK, 1981.
r, E. and M.C. Campi (2002). Non-
symptotic confidence ellipsoids for the least-
quares estimate. Automatica, 38, 1539-1547.

ENDIX: Proof of Lemma 1.

e the vector valued function
R

(n+n2)×1 → R
(n+n2)×1, defined by

z,v) :=
[

e
v

]
=

[
V 0
0 In2×n2

] [
z
v

]
, (A.1)

= col(VT ) a vector containing all elements
. When denoting e′ := [eT vT ]T and z′ :=

T ]T it follows that the pdf

pz(z) =
∫

v

pz′(z′)dv.

the mapping from z′ to e′ it follows from
ard theory on the transformation of random
les (Priestley, 1981) that

pz′(z′) = pe′(g(z′)) · det(J(g(z′)))

he Jacobian given by

J(g(z′)) =
[

V Z

0 In2×n2

]
,

containing the partial derivatives of V z to
nsequently

pz(z) =
∫

v

pe′(g(z′)) · det(J)dv

=
∫

v

pe(V z)pv(v) · det(J)dv

the latter equation follows from the fact
and V are independent. Using the Gaussian
ution of e and the fact that det(J) =
) = 1 it follows that

pz(z) =
∫

v

1
σ
√

2π
e−σ−2zT V T V z pv(v)dv

=
∫

v

1
σ
√

2π
e−σ−2zT z pv(v)dv

= pe(z)
∫

v

pv(v)dv = pe(z).
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