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Abstract— This article presents a variance reduction scheme for non-
parametric transfer function estimators based on the use of wavelets as an
alternative to the traditional spectral windowing. The latter can be gener-
alized into a variance reduction method based on thresholding (omitting or
altering) the coef�cients of an orthogonal series expansion of the estimator
to be smoothed. The ef�ciency depends on the degree in which the infor-
mation on the true function and on the estimation errors is separated in the
transform domain and on the choice of threshold operation. Crucial is the
choice of threshold level, distinguishing between coef�cients related pre-
dominantly to estimation errors and those associated with the underlying
true function. The standard wavelet threshold operation with a constant or
level-dependent threshold can not be applied to wavelet coef�cients of spec-
tral denstity functions. The nonstationarity in the statistical properties of
these estimators reveals itself in the wavelet domain as signi�cant peaks. An
ef�cient threshold level should follow the standard deviation of each wavelet
coef�cient. New exact expressions of the standard deviation are presented,
using the fact that we are dealing with functions associated with linear time
invariant systems. An estimator based on these expressions proves to be an
appropriate threshold level.

Keywords—System identi�cation, transfer function estimation, wavelets,
variance reduction, spectral estimation, frequency dependent window

I. INTRODUCTION

Wavelets, developed since the 1980’s, have found their use in
various �elds of science as mathematics, physics, geology and
image processing. Extensive literature is available on the theory
of wavelets and their properties ([11][9][5]). Their application
in practice generally follows the wavelet denoising scheme of
Donoho (1995), based on the compression ability of wavelets
and the associated possibility of ef�cient noise reduction. In
the �eld of system identi�cation their in�uence has not been
of comparable degree. The application has been studied for
variance reduction in auto spectral density function estimators
([12][14]) and research is undertaken to develop model struc-
tures in terms of wavelets ([6][1][2]). Bodin (1995) employs
wavelets for smoothing the empirical transfer function estimate
by combining wavelet denoising with the traditional spectral
windowing.

We will introduce a technique for variance reduction in non-
parametric transfer function estimators based on the application
of wavelets, as an alternative to the use of spectral windows.
The theory behind the method is characterized by the fact that
explicit use is made of the properties of wavelets and of the
fact that the functions under consideration are linear time in-
variant. In particular, an estimator of the standard deviation in
the wavelet coef�cients is presented, serving as a threshold level
corresponding with the behaviour of the estimation errors in the
wavelet coef�cients.

Background information and properties of the spectral esti-
mators are given in sections II. Section III deals with wavelet
thresholding and emphasizes its potential by showing that re-

sulting variance reduction follows from windowing with a fre-
quency dependent window. Section IV shows that the direct ap-
plication of the standard wavelet thresholding to the empirical
transfer function estimate is infeasible. Section V then presents
the new variance reduction method. Section VI motivates the
use of a threshold level following the standard deviation in the
wavelet coef�cients. An estimator of the standard deviation is
derived in section VII, which is shown to serve as an appropriate
threshold level.

II. BACKGROUND

A. Situation under consideration

We adopt the following system representation in the fre-
quency domain:
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where the transfer function �����, given by
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relates the Discrete Time Fourier Transforms of the input ����
and the observed output 
��� � �
��� � ����.1 The underly-
ing system is taken to be scalar, linear, time-invariant and dis-
crete, letting the variable � be an integer. The data ������ 
���� is
known within an interval ��� � 	, while the additive term ���� to
the output �
��� of the system represents all random in�uences.
Both the input ���� and the noise term ���� are considered to be
zero mean Gaussian distributed stationary stochastic sequences.

The �niteness and random behaviour of the observed input
and output data implies that the derivation of the transfer func-
tion ����� amounts to estimating this function. Here non-
parametric estimators will be considered.

B. Transfer function estimator

The deterministic behaviour of the underlying system can be
deduced from the observed stochastic input and output data by
use of their ensemble properties. The transfer function ����� is
expressed in the cross spectral density function of the input and
the output and the spectral density of the input by

����� �

�����


����
� (3)

�Due to the fact that the energy of a random process is unlimited, the standard
Discrete Time Fourier Transform has to be modi�ed for stochastic signals. De-
�ne, for data length� ,�� ��� � ��
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������ for any (stochastic)

signal ����. Omittance of the subscript� , as in equation 1, will denote the limit,
if existing, of the transform for � ��.
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This expression is exact under the condition that the input ����
is uncorrelated with the additive noise term ����.

Expression (3) allows the problem of estimating the transfer
function ����� to be transferred to the problem of estimating
the (cross) spectral density functions 
����� and 
����. Well-
known estimators, found in e.g. [13] and [8], are given, for input
and output observations of data length � , by
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where ������� represents the estimator of the covariance func-
tion ������ given by
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The corresponding transfer function estimator, given by
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is commonly known as the empirical transfer function estimate.

C. Properties of the spectral estimators

Both the (cross) spectral density function estimators �
�����

and �
���� and the empirical transfer function estimate
����
���� are not consistent. Though asymptotically unbiased
and uncorrelated in neighbouring frequencies, they do not con-
verge in the mean square sense to the functions to be estimated.2

In particular, with ���� the Nyquist frequency (e.g. [8], [13])
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The variance is independent of the sample size � , which, in
combination with the neighbouring values being uncorrelated,
results in an erratic and wildly �uctuating form making them
of practically no use as an estimate of the spectral density func-
tions. The resulting empirical transfer function estimate exhibits
a similar behaviour. To turn �
�����, �
���� and ����
����
into proper estimators, further processing is required by which
the variance is reduced.

III. WAVELETS AND WAVELET DENOISING

Variance reduction is traditionally achieved by means of spec-
tral windowing. The mechanism involved in the use of lag win-
dows can be generalized by considering series expansion of the
spectral estimator �
��� in orthogonal basis functions �����.

A. Wavelets

We consider the series expansion of a spectral estimator in pe-
riodic orthogonal discrete wavelets allowing for a multiresolu-
tion analysis. For details the reader is referred to [9][5][11]. The
Periodic Discrete Wavelet Transform (���	�, ���	�� is induced

�An important exception is formed in case of a periodic input.

by projecting the sampled spectral estimator �
���� onto the
two-dimensional family of orthonormal functions �������� and
��������, generated by dilation and translation of a basic scaling
function ����� and associated wavelet ����� (for 	� � 
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Note that the translations are taken in steps of 
� . But for this
downsampling operation the wavelet transform could be inter-
preted as a straightforward convolution of the estimator �
����
and the scaling function ������� or wavelet ������� at scale �.
We use a transform known as the Shift Invariant Wavelet Trans-
form, induced by the coef�cients ������� and ������� obtained by
projecting 
� samples of one period of the spectral estimator
�
���� onto all the 
� integer translates of basis functions �������
and �������,
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The original wavelet coef�cients ���	� follow from a downsam-
pling with a factor 
� (���	� �� 
�

�
�������

	
). The wavelet

transform transforms 
� � 

�� samples of one period of the

sampled spectral estimator �
���� into 
� coef�cients ��� �	�

and ���	� representing the correspondence between �
���� and
the periodized discrete scaling functions �������� and wavelets
�������� of a particular scale � 
 ��� �� 	 and frequency 
�	

(	 
 ��� 

���� 	�.

The Inverse Discrete Fourier Transforms of basis functions
������� and ������� (and �������� and ��������, as they only
differ in the manner of translation) are given by
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where the �lters ���� and ���� are conjugate quadrature mir-
ror �lters. The �lters �� and �� are complementary low-pass
and a high-pass band �lter, respectively. Figure 1 shows how
each wavelet coef�cient contains information on details in the
spectral estimator not only associated with a particular place in
the estimator but as well with a particular scale, or ”frequency
band”.

B. Thresholding expansion coef�cients

The spectral estimator is considered to consist of the true
spectral function 
��� and an additive error term � ���, rep-
resenting the estimation errors.3 The linear operation of project-

�Note that we consider the estimator ����� to be unbiased. If this assump-
tion is not valid, in the following discussion the true spectral density function
���� should be replaced by the sum of ���� and a term representing the bias.
Variance reduction is then optimized with respect to the biased function.
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Fig. 1. Left: Partitioning of the ’wavelet frequency domain’ into bands related
to wavelets and scaling functions of scale �. Right: Translation and dilation
of a scaling function (coifman-5). The scaling functions are localized in time
and in scale.

ing �
��� onto orthonormal basis functions �����
4 then results in

expansion coef�cients � � to consist of the sum of an element  �
associated with the true spectral function 
��� and an element
 ��� related to the estimation error � ���,

�
��� � 
��� � � ���

� � �  � �  ��� � (11)

A new estimator �
����, based on altering the expansion co-
ef�cients � � with a factor !�, is given by

�
���� �
��
���

!�� ������� (12)

The scaling factor !� can reduce the in�uence of the error term
� ��� in the spectral estimator by altering or omitting in the se-
ries expansion those basis functions �����, whose coef�cients
� � contribute, in some norm, more to the error term � ��� than
to the true spectral function 
���. The independency of each of
the coef�cient guarantees that altering or removing one coef�-
cient will not affect the others. In the �eld of wavelet theory an
operation as 12 is known as thresholding the expansion coef�-
cients � � [7].

C. Threshold level

A proper bias and variance trade-off, inherent in the thresh-
olding operation 12, can not be made on the basis of the avail-
ability, in practice, of a single realization of the spectral estima-
tor �
����. In order to remove those wavelet coef�cients predom-
inantly representing information on the estimation error � ���,
we have to resort to ensemble properties of the wavelet coef�-
cients. Donoho and Johnstone (1995) showed that the maximum
values of a particular realization of a Gaussian white noise are
related by a factor, asymptotically




 ������, to the standard

deviation. Omittance of all coef�cients under the so-called uni-
versal threshold "




 ������ ensures that, if the expectation of

a coef�cient � � is zero, the probability of keeping the noisy co-
ef�cient vanishes asymptotically.

In practice, due to the �niteness of the data, one resorts to
scaling the standard deviation with a factor used as a design
variable comparable to the bandwidth parameter in spectral win-
dowing. [14][12] [5]

�Here �� represents either a scaling function or wavelet with associated coef-
�cients 	�.
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Fig. 2. Wavelet coef�cients of �
��	����� associated with the rotating drive
system of �gure 5. Coef�cients above 500 contain no signi�cant informa-
tion on the true function. The large peaks are due to the in�uence of the
stochastic input outside the time interval under consideration. Here even
for � � ���	 a constant threshold level can not be used.

D. Why wavelets are suitable

The variance reduction resulting from the threshold operation
can be made more explicit. Equation (12) can be written as,5
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The smoothing window # ��� �� results from altering the in�u-
ence of some of the basis functions in the series expansion of
the estimator �
���. Alternatively, the omittance of coef�cients
in any series expansion results in the projection onto a lower
dimensional subspace.

In traditional spectral windowing the application of the lag
window to the covariance function estimator ����� results, due
to the speci�c character of the complex exponentials associated
with the Discrete Time Fourier Transform, in a convolution with
a spectral window of �xed form. For general basis functions, the
resulting window will be frequency dependent.

Note that the omittance of all wavelet coef�cients upto a cer-
tain scale �, will result exactly in the application of a lag window
����� and resulting smoothing operation with a �xed spectral
window ������ (�g. 1). The potency in the use of wavelets lies
with the fact that each wavelet coef�cient can not only be as-
sociated with a ”frequency band”, but with a particular interval
around � � 
�	 as well. As the coef�cients are independent due
to the orthonormality of the wavelets, the smoothing operation,
the trade-off between bias and variance, can be made locally.

IV. WAVELET DENOISING DIRECTLY TO THE EMPIRICAL

TRANSFER FUNCTION ESTIMATE

The direct application of the thresholding scheme to the em-
pirical transfer function estimate seems at �rst sight to be attrac-
tive. Well-known expressions by Ljung (1985) for the statistical
properties of ����
���� indicate the estimator to be asymp-
totically unbiased and uncorrelated, exhibiting a variance given

�For convenience, continuous functions are considered. Strictly speaking,
����� is not necessarily contained in �����. In practice, we consider ������
which will be a function in �����, allowing for an exact representation in basis
functions ����� � �����.
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by the signal to noise ratio [10]. For white input and noise se-
quences, or at least sequences having a smooth spectral density
function, the standard deviation in the associated wavelet co-
ef�cients is then constant. A simple constant threshold would
provide for a proper thresholding operation.

However, the behaviour of ����
���� will be erratic corre-
sponding to the particular realization of the input, with severe
outliers where the denominator in (6) is close to zero. But more
important, the expressions of Ljung are derived under the as-
sumption that the input ���� is deterministic or periodic. In a
general setup, the past values of the input ���� are not known
and the input ���� will be stochastic as its realizations differ for
different experiments. This implies that the in�uence of the val-
ues of the input outside the time interval under consideration
should be ascribed to the variance. (see also [4]) The additional
in�uence to the variance is proportional to the magnitude of the
underlying true transfer function. For transfer functions exhibit-
ing both large and small values in their magnitude this implies
that the variance in both ����
���� and the associated wavelet
coef�cients is severely nonstationary (�g. 2).

The application of a narrow Hamming window prior to the
application of the wavelet denoising scheme, as proposed by
Bodin (1997), will reduce both the magnitude of the variance
and its variation over frequencies by correlating the values of
����
����. However, Bodin’s method is still based on the vari-
ance expression of Ljung (1987) and does not consider the in-
�uence of the stochastic input outside the interval under consid-
eration. Particularly in the situation of a transfer function to be
estimated exhibiting signi�cant variations in its magnitude, the
nonstationarity in the variance in the wavelet coef�cients will
be signi�cant even after the application of a spectral window.
Moreover, the choice of the right combination of threshold level
and bandwidth of the spectral window is not trivial.

Instead, we suggest the use of a threshold level explicitly fol-
lowing the nonstationary standard deviation in each coef�cient.
This is possible by exploiting the fact that the functions are as-
sociated with linear time-invariant systems.

V. PROPOSAL OF A VARIANCE REDUCTION SCHEME

We propose a variance reduction scheme for smoothing an
empirical transfer function estimate ����
����, based on the
wavelet denoising of expression (13) of the cross spectral den-
sity function estimator �
����� and the spectral density function
estimator �
���� in expression (6):
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Though the literature on spectral windowing (e.g. [13]) sug-
gests the use of a window with different bandwidth for �
�����

and for �
����, it should be realized that the cross spectral den-
sity function estimator �� ����� ��� is directly related, through
the true transfer function, to the spectral density function esti-
mator ��� �����. The variations following the features of the
particular realization of �� ���, are more signi�cantly present
in the term �� ����� ��� than the in�uence of the true trans-
fer function on its expectation. Empirical results verify that the

strong correlation between numerator and denominator requires
an identical smoothing operation.

As it is the cross spectral density function in the numerator
which contains the system information we are interested in, we
base the wavelet denoising on thresholding the wavelet coef�-
cients of �
�����. Subsequently, the same threshold operation
!��� is applied to the wavelet coef�cients of the denominator
�
����.

VI. THRESHOLDING THE CROSS SPECTRAL DENSITY

FUNCTION ESTIMATOR

Figure 3 depicts the wavelet coef�cients of an estimator of
the spectral density function 
�����. The wavelet transform
has been able to compress the information on the true function
in a small number of relatively large coef�cients. However, the
choice of threshold level must be based, without knowledge on
the true function, on the availability of a single realization only.
A proper threshold level should follow the signi�cantly varying
standard deviation.

The variance of the wavelet coef�cients ���	� can be ex-
pressed in terms of the covariance matrix of the estimation error
� ���. With expressions (11), (8) and (9), we have for the shift
invariant wavelet coef�cients �������
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(15)

The standard deviation for the wavelet coef�cients ���	� follows
from downsampling (�������	�	 �� 
����� �������		�� Since the
statistical properties of the spectral estimator �
����� are pro-
portional to the underlying true function (see expression (7)),
expression (15) shows the standard deviation in the wavelet co-
ef�cients to vary greatly over the coef�cients (see �gure 3).

VII. ESTIMATING THE VARIANCE IN THE WAVELET

COEFFICIENTS

In practice, the speci�c features of the variance in the wavelet
coef�cients of �
����� have to be estimated from one realization
of an input ���� and output 
���. The main problem lies with
the fact that available expressions of the covariance of the cross
spectral density function estimator like (7) are too approximate
for estimators based on a small number of input and output data.
Exact expressions that are valid for �nite data sets can be derived
though, in terms of the covariance function estimator �������, by
applying the Fourier Transform to expression (15).

A. Theoretical expression for the variance in wavelet coef�-
cients of a cross spectral density function estimator

From expression (15), with � ������������� denoting the con-
volution between � ���� and the reversed shift invariant wavelet
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transform ��������, it follows that

���� �������	 � $
��� ���� � ����������� ���� � ����������

	
�

(16)

The straightforward application of the Inverse Discrete Time
Fourier Transform to expression (16) yields for the (periodic)
shift invariant wavelet coef�cients ������� of scale �,
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where ����� denotes the wavelet �lter corresponding to the
wavelets ����� of scale � (cf. 10) and ���� the Inverse Dis-
crete Time Fourier Transform of � ���. Relating the expectation
operator$�
	 to the stochastic variables only and noting from (4)
that the term ��	� represents the estimation errors in the covari-
ance function estimator �������, results in
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The Inverse Discrete Fourier Transform of the variance in the
shift invariant wavelet coef�cients ����	� is seen to be expressed
in terms of the covariance function of the covariance function
estimator ������� and the wavelet �lters ����� of the associ-
ated wavelets �����. It is precisely for the covariance function

estimator ������� that an exact expression can be derived,
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where the ranges of summation should be taken as
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Fig. 3. Top: Wavelet coef�cients (coifman-5) of a realization of an estima-
tor ��
����, with expectation equal to the coef�cients of the true function
�
����. An ef�cient threshold is based on scaling the standard deviation.
The standard deviation is calculated from a Monte Carlo simulation of ����
realizations of ��
����� based on a white noise and input signal of length
� � ��� with variance ��� � � and a noise term ���� additive to the
output with variance of ��� � ������� Bottom: Estimation of the standard
deviation based on a single realization using expressions (18) and (19) .

Expressions (18) and (19) are exact even for �nite data sets.
By a simple Discrete Fourier transformation and appropriate
downsampling the variance in the wavelet coef�cients is ob-
tained.

B. Estimating the variance in the wavelet coef�cients

An estimator of the variance in the wavelet coef�cients of
�
����� from a single realization of the estimator is obtained
by using estimators �������, ������, ������� and �����	� with
expression (5) for the occurring covariance functions in ex-
pression (19). Note that, ������ � �������� � ������ and
������ � �������, as ���� and ���� are assumed to be uncor-
related. Therefore, the estimate follows with

��%� � �����	�� �����	 � ��
�

�
�

��

�



�
�

�
�����&� �� ����&� �� ��

� �����&� �� 	 � �� �����&� �� 	�
�
� (21)

Figure 3 depicts an example, based on the test system found
in [3], of an estimation of the standard deviation in the wavelet
domain based on one realization of the input and output data
and the use of expressions (18) and (21). As an estimate of
the standard deviation itself the estimator is naturally quite poor
since it is based on one realization only. Although following
the peaks, the estimator is too erratic to closely approximate the
true (Monte Carlo) standard deviation. However, the features of
the particular realization of the estimation error in the wavelet
coef�cients on which the estimation is based are followed re-
markably well by the estimation of the standard deviation. The
estimator practically encloses the estimation error in the wavelet
coef�cients of the particular realization on which the estimator
is based. As such it serves as a very ef�cient threshold by being
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is given.

able to clearly assess the presence of estimation errors in each
wavelet coef�cient. Monte Carlo simulations indeed reveal that
thresholding with this estimate results in a low mean square er-
ror, even lower than when applying the real standard deviation
(cf. �gure 4) .

The method is well capable of properly identifying those co-
ef�cients predominantly containing estimation errors. In fact,
with expressions (18) and (21) it is the data of one realization
itself which provides this information. However, the present im-
plementation of expression (21) is such that only data sets upto
� � ��
 are feasible. It is for these small data sets that often the
����
���� to be smoothed does not contain suf�cient informa-
tion. Figure 5 shows an example of this situation, where no in-
formation on the high frequency peak is available for identi�ca-
tion. The fact that for this data length the proposed method per-
forms similar to the optimal spectral windowing is quite promis-
ing. The objective of improving upon spectral windowing could
be obtained when the implementational issue will be solved.

VIII. CONCLUSIONS

Wavelet denoising provides for an effective variance reduc-
tion in the empirical transfer function estimate, when based on
the consecutive thresholding of the wavelet coef�cients of the
(cross) spectral density function estimator in its numerator and
denominator. Theoretical expressions of the standard deviation
in the wavelet coef�cients allow for the derivation of threshold
level which, based on one realization, ef�ciently removes the
estimation errors. The absence of a theoretical expression for
the variance in ����
���� for �nite stochastic data sets pre-
vents the direct application of the wavelet denoising scheme
to ����
����. Further research is required on the choice of
wavelet type, since wavelet denoising is based on the assump-
tion of a compact representation of the function to be smoothed.
Empirical results indicate that the proposed method is a promis-
ing alternative to the traditional spectral windowing.
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