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Abstract

In this paper an approach is presented to estimate a
linear multivariable model on the basis of (noisy) fre-
quency domain data via a curve fitting procedure. The
multivariable model is parametrized in either a left or
a right polynomial matrix fraction description and the
parameters are computed by using a two-norm mini-
mization of a multivariable output error. Additionally,
input-output or element-wise based multivariable fre-
quency weighings can be specified to tune the curve
fitting error in a flexible way. The procedure is demon-
strated on experimental data obtained from a 3 input
3 output Wafer Stepper system.

1 Introduction

Formulating a procedure that is able to estimate a
model on the basis of frequency domain data has gained
considerable attention in the research on system iden-
tificat ion. Alt bough the clear distinction between time
and frequency domain data is generally overestimated
[12], estimation of models by fitting complex frequency
domain data has several advantages compared to time
domain approaches. Firstly, representing data in the
frequency domain domain can yield substantial data
reduction [14]. Secondly, compressing a huge amount
of time domain data into a finite number of frequency
points facilitates noise reduction directly. Both aspects
are used extensively in commercially available sophis-
ticated test equipment for spectral analysis.
Based on Least Squares (LS) estimation techniques, as
used by Levi in [1O] and further refined by Sanat hanan
and Koerner in [15], multivariable frequency domain
curve fitters have been formulated in the literature.
One is referred to [11], [4] and the more recently intro-
duced procedure in [1]. Basically, the procedures differ
in the way the multivariable model is parametrized and
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whether or not the procedure allows for a specification
of the model order and a (multivariable) weighting on
the curve fit error. As such, in [11] a multivariable
model is found by the composition of scalar subsystems,
while the order of the subsequent transfer functions
is determined by testing the residuals. A similar ap-
proach can be found in [4], wherein a Chebyshev poly-
nomial basis is used to improve numerical conditioning
of the LS-problem. In [1] the model is parametrized
directly by means of a matrix numerator polynomial
and a scalar common denominator polynomial, whereas
only a scalar frequency dependent weighting on the
curve fit error is allowed.
Several alternatives to a LS-approach can also be found
in the literature. In [13] a subspace based algorithm
in the frequency domain is presented that allows the
user to specify an additional frequency weighting. In
[9] a frequency domain curve fitter has been developed
in which a maximum amplitude of a (weighted) curve
fit error is being considered. Furthermore, so-called
‘HW-identification procedures, currently applicable to
scalar frequency domain data, can guarantee an up-
per bound on the additive error, see e.g. [8] and the
references therein. Unfortunately, a maximum ampli-
tude criterion can be highly sensitive to noise, whereas
the available ‘1-t~-identification procedures might yield
high order models for moderately damped processes [5].
Based on the LS-approach, this paper presents a mul-
tivariable frequency domain curve fitter in which the
aim is to minimize the two-norm on a (weighted) curve
fit error for a model having a limited McMillan degree.
The multivariable model is parametrized by either a
left or right polynomial Matrix Fraction Description
(MFD). By use of Kronecker calculus it will be shown
that both a pre, post or element-wise multivariable
frequency weighting on the curve fit error can han-
dled relatively easily. Furthermore, it will be shown
that the iteration described by [15], denoted by SK-
iteration, can be generalized to estimate a polynomial
MFD. Due to the subsequent convex optimization steps
in the SK-iteration, this approach supports the estima-
tion of models with many parameters. Similar to the



approach followed by [1] and supported by the work
of [17], the resulting estimate can be used as an initial
value for a Gauss-Newton optimization.
Although cumbersome iterations can be avoided by
the use of a realization based algorithm as reported in
[13], the possibility to prespecify the McMillan degree
of the model and to introduce a flexible element-wise
frequency weighting on the multivariable data is quite
helpful from a practical point of view. The procedure
will be illustrated by fitting a multivariable model on
the frequency response obtained from the positioning
mechanism present in a wafer stepper.

2 Problem formulation

To formulate the multivariable frequency domain iden-
tification problem, consider the following set g of noisy
complex frequency response data observations G(wj ),
evaluated at N frequency points wj.

~ := {G(tij) I G(~j) E Cpxm, forj E 1,..., N} (1)

The aim of the identification problem discussed in this
paper is to find a linear time invariant multivariable
model P of limited complexity, having m inputs and P

outputs, that approximates the data ~ in (1).
To address the limited complexity, the model P(O) is
parametrized by a either a left or right polynomial
MFD that depends on a real valued parameter O of
limited dimension. The specific parametrization of the
polynomial MFD of P(d) is discussed in the next sec-
tion. The approximation of the data G by the model
P(O) is addressed by considering the following additive
error.

E.(OJj,6) := [G(~j)– P(~(wj), d)] for~ c 1,..,N (2)

The complex variable ((.) in (2) is used to denote the
frequency dependency of the model P(O). In this way,
((uj) = iwj to represent a continuous time model
whereas ~(wj ) = e’w~T (shift operator) or ~(wj) =
(eiw~ – 1)/T (~ operator) to represent a discrete time

model with sampling time T.
To tune the additive error E. in (2), both an input-
output frequency weighted curve fit error EW with

EW(Wj , d) := ~out (wj)Ea(wj , e)~in(wj) (3)

and an element-wise frequency weighted curve fit error
Es with

E.(wj, (9) := S(OJj).* Ea(wj, e) (4)

will be considered in this paper. In (4) .* is used to
denote the Schur product; an element-by-element mul-
tiplication.
Using the notation E to denote the frequency weighted
curve fit error EW in (3) and E, in (4), the deviation
of the data g is characterized by following the norm
function J(O).

J(O) := ‘f tr{E(~j70)E*(wj, 0)} = IIE(0)II% (5)

icl
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In (5) * is used to denote the complex conjugate trans-
pose, tr{.} is the trace operator and IIE(0) [1F denotes
the Frobenius norm operating on the matrix E(O) =
[E(wl, 8) . ~ E(w~, 0)]. Consequently, the goal of the
procedure d~scribed in this paper is to find a real valued
parameter O of limited complexity that can be formu-
lated by the following minimization.

(6)

3 Parametrization

3.1 Polynomial matrix fraction descriptions
The multivariable model is represented by either a left
or right polynomial MFD, respectively given by

P(~, 0) = A((-’, O)-lB(&-l, t?) (7)

P(<, 8) = B((-l, O)A(~-l, 0)-1 (8)

where A and B denote parametrized polynomial ma-
trices in the indeterminate ~–1.
For a model having m inputs and p outputs, the the
polynomial matrix B(.$-l, 6) is parametrized by

d+b–1

B(~-1,6) = ~ B~f-k (9)
k=d

where Bk E ~pxm, d denotes the number of leading
zero matrix coefficients and b the number of non-zero
matrix coefficients in 11(~-1, 6). For the left MFD in
(7), A(~-’, 0) is parametrized by

A(f-l, 0) = I,x, + ~-1 ~ A~ ~-k+l (lo)
k=l

where Ak ● IRpxp and a denotes the number of
non-zero matrix coefficients in the monic polynomial
A(~–l, 0). The parameter 0 is determined by the cor-
responding unknown matrix coefficients in the polyno-
mials. Hence,

6’=[~d . . Bd+b-1 Al .“” A.] (11)

and @ E IRpx‘~b+p”) for the left MFD in (7). Dual
results can be formulated for the right MFD in (8).
Additionally to the full polynomial parametrization
presented here, so-called structural parameters dzj, baj
and aij with d := min{dij}, b := max{bij}, and
a := max{azj } can be used to specify a none-full Poly-
nomial parametrization. In this way, the parameter 6
as given in (11) may contain prespecified zero entries
at specificlocations. This may occur in a discrete time
model with .$-1 = z–l where the value of dij has a
direct connection with the number of time delays from
the jth input to the ith output.

3.2 Model order
Due to the indeterminate (–1, it can be verified that
the MFD of (7) or (8) gives rise to a (strictly) proper
1



transfer function matrix P((, (?), regardless of the value
of the integers di,j, b~,j or ai,j. Hence, there are no
restrictions on the size of the structural parameters,
other than a limitatio~ on the McMillan degree of the
resulting model P((, (3). For the connection between
the structural parameters and the McMillan degree of
P((, 0), the following result can be given.

Lemma 3.1 Consider a parameter ~ such that A. # O
and Bd~b_l # O. Define

q:=max{a, d+ b-1} (12)

and ~((,@ := (~A(~–l,@), ~((,~) := &~B(&–l,~).
Let n be used to denote the McMillan degree of the

multivariable transfer function model P(C, 0) obtained
by (7) or (8), then

n = deg det{A(~, 8)}
.

if and only if ~(~, 0) and B((, e) are left coprime over
IR[.$]in case of (7) and right coprime over lR[~] in case
of (8).

Proofi The proof is given for (8). With the condition
A. # O, Bd+b-l #O, itfollows that ~(() := (’~A(<-l)
and ~(~) := ~~B((–l ) are polynomial matrices in f.
In case of (8), P(() = ~(~)A(&)–l and a state space
realization [A,B,C, D] for P(t) can be obtained, such
that dim A = deg det {A(()} and {A, B} controllable,
see e.g [3]. Furthermore, {C,A} is observable if and
only if A(g) and B(c) are right coprime over ll?[~], see
theorem 6.1 in [3]. Dually, the result can be shown for
(7). ■

Under -some mild c?ndition on the polynomials
A(~–l, 0) and B(~-l, 0) being estimated, lemma 3.1

gives a direct relation between the deg det {A(f, @ } and
the McMillan degree of the resulting estimate P({, e).
In case of the left MFD (7), deg det {A(C, 6)} generally
will be equal to qp. Hence, the structural parameters
give rise to (an upper bound) on the McMillan degree
of the model being estimated. For a more detailed
discussion on the exact relation between the McMil-
lan degree, the row degree of the polynomial matrices
A(~-l, @), B(&-l, 0) and the observability indices of a
model computed by a left polynomial MFD, one is re-
ferred to [6] or [16].
Compared to a parametrization of the multivariable
model P(f, 6) using a scalar common denominator
polynomial d(<–l, f?) as presented in [1], the para-
met rization using a (left) MFD is more flexible, as
a scalar common denominator restricts A(f–l, 0) to
be IPXPd(~–l, 6). A model with one output that is
parametrized by the left MFD of (7), constitutes a
scalar common denominator polynomial A(~–l, 0).

4 Computational procedure

4.1 Iterative minimization
In this section, the minimization of (6) will be discussed
by means of an iterative procedure of convex optimiza-
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tion steps similar to the SK-iteration of [15]. The atten-
tion will be restricted to a parametrization of P(~, 0)
based on the left MFD (7) as dual results can be ob-
tained for a right MFD. To extend the SK-iteration to
the multivariable case, first consider the (unweighed)
additive curve fit error of (2).
For a model P((, 6) parametrized by left MFD, (2) can
be written as

Ea(LJj, (3) = A(@j)-l,O)-l~(w j,6) (13)

where E(wj, 6) is the equation error defined by

E(oj, 6) := A(&(wj)-l, O)G(tij) – B(&(wj)-l, d). (14)

Substituting the parametrization (7) for the polynomi-
als A, B, the equation error in (14) can be represented
by

fi(wj, e) = G(wj) – 6W(L+) (15)

where 6 is given in (11) and

[
~xmf(w.j)-dI

1

@(Wj) = III~Xm~(Uj)-(d+W

G(wj)~(uj)-l
(16)

G(uj)~(uj)-o

with @(wj ) E C(mb+pa)xm.

A matrix ~(@) can be formed by stacking fi(wj, 0)
column-wise for j E 1, . . . . N and this yields

where G and P are found by stacking the real and
imaginary part of respectively G(wj ) and @ (wj ) for
j E 1,..., N. Due to the linear appearance of the pa-
rameter 0, (17) corresponds a standard least squares
problem that can be solved by numerical reliable tools
as e.g a QR-factorization with (partial) pivoting [7].
Due to the fact that A(~–l, 0) in (13) also depends on
the parameter 0, the linear appearance oft he parame-
ter 13in (13) is violated. In order to facilitate the con-
vexity in minimizing the two-norm on the equation er-
ror in (17), an iterative procedure similar as in [15] can
be used. An estimate et in step t is computed by re@ac-
ing A(f(wj)–ll 0) in (13) by a fized A(((wj)–l, oi–l)

based on an estimate 9~_l obtained from the previ-
ous step t – 1. In this way the l?robeniu~ norm of
an output weighted equation error ~w(wj, Ot–1, 8) =

A(&(~j)-l, ~t-l) ‘l fi(uj, O) needs to be minimized re-
peatedly according to

This generalizes the SK-iteration to multivariable mod-
els parametrized by a left polynomial MFD. A dual ap-
proach can be formulated for a right polynomial MFD.
2



The estimate obtained from the SK-iteration is not op-
timal in the sense of (6) in presence of noise and/or in-
correct model order, but it does provide a tool to find
an initial estimate for a GN-optimization [17]. Fur-
thermore, the convex optimization to be solved in each
step of the multivariable SK-iteration supports the es-
timation of models with many parameters. The com-
putational procedure to obtain the parameter e in case
of the (weighted) curve fit errors of (3) and (4) is pre-
sented in the subsequent sections.

4.2 Input-output weighting
The input-output weighted curve fit error of (3) can be
rewritten into

E~(LLJj, 0) = Ti’.~~(Ldj,‘) E(wj, ‘)wi?Z(wj) (18)

where Wout (uj, 6) := WOU~(Wj)A(~(Uj)-l, (3)-1 and
fi(uj,6) is given in (14).
Using a similar approach of iterative minimization
s~eps as used in section 4.1, the paramet~r 13 in
WOUt(wj, 0) in (18) is fixed to an estimate @t-l ob-
tained from the previous step t-1. Consequently, the
weighted equation error EW defined by

Ew(c+, et-l, e) := Wout(wj, et) fi(uj, o)win(~j) (19)

again indicates that the parameter O to be estimated
appears linearly in (19).
Although the free parameter 0 appears linearly in (19),
writing down a matrix representation for the weighted
equation error ~W similar to (17) would inevitably lead
to additional (large) sparse matrices that need to be
stored in order to compute the least squares solution.
The sparse matrices arise from the frequency depen-
dent output (and input) weighting that need to be in-
corporated [1]. Furthermore, the parameter @ might
have a structure containing zero entries at prespecified
locations if a none-full polynomial parametrization is
being used.
To avoid the computational and memory storage is-
sues that arise from dealing with (large) sparse ma-
trices and to be able to take into account the specific
structure that might be present in the parameter 0, a
fairly simple and straightforward computational pro-
cedure based on Kronecker calculus is presented here.
For this purpose consider the following definition.

Definition 4.1 Consider two matrices X E C“’ ‘n’
and Y E ~mlxm2, then the Kronecker vector
vet(X) ● (IP1’2 x ] and the Kronecker product X B
Y E Cn’m’xn’m’ are respectively defined by vet(X) :=
[xl . zn,]~ and

[

ZI,IY ... Xl, nzY

xlg)Y:= : . . . :

xnl,1Y ..- xn,,n2Y 1

where xi,j andxj fori ~ 1,. ... nl andj E 1,. ... nz
are used to denote respectively the (i, j) th entry in X
and the j th column in X.
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The Kronecker product is a well known concept [2]
and by stacking the columns of a matrix to obtain
the corresponding Kronecker vector aa mentioned in
definition 4.1, the following result can be obtained.

Proposition 4.2 Consider (complex) matrices X, Y

and Z with appropriate dimensions, such that the ma-
trix product C := XYZ is well defined. Then vec(C’)
satisjies

vet(C) = [ZT B X]vec(Y).

Proofi The proof can be found in [2]. ■

On the basis of proposition 4.2, the Kronecker vec-
tor of the input/output weighted equation error
fiW(Uj, ei–l, O) in (19) can be written as

vec(fiW ) = vec(~OUtGWa.) – [[@Wi.]T @ ~OUt]vec(6)

wherein the arguments Wj, et–l and @ are left out,
to avoid notational issues. As the Frobenius-norm
satisfies 11X[l% = [lvec(X) 1[~ for an arbitrary ma-

trix X, the Frobenius-norm on EW can be character-
ized -by a matrix representation formed by stacking
v@E~(~j, @t–l,6)) row-wise for .j E 1, ..., N. This
yields the following estimate

where @ = vec(t9) E lRP(~b+P~Jx1 according to
(11). Furthermore, GW E lR2p~N x1 and PW 6
~2pmAJxp(mb+pa) are matrices that can be found
by row-wise stacking o! the r@ and imaginary
part of respectively vec(w’~~i (uj, Ot-1)AG(wj)Wi~ (~j))

and vec([@(~j)Win(~j)]~ @ ~o~t(wj, f3t-1)) for ~ E
1,..., N.
The regression matrix PWin (20) does not exhibit any

sparse matrix structure as occurs e.g. in the method of
[1]. In fact, 2pmN x p(rnb + pa) entries is the smallest

dimension of the regression matr~x PW in order to com-
pute a least squares parameter O that has p(rnb + pa)
unknown entries (for a a left full polynomial paramet-
rization) on the basis of N complex frequency domain
points of a p x m multivariable system. In this way
memory storage problems are avoided directly as much
as possible.
As the parameter Ois converted into a column parame-
ter @ = vec(t9), any prespecified zero entries in ~ can be
incorporated in the estimation of the parameter rela-
tively easy. This can be done by omitting the columns
in the regression matrix PWthat correspond to the zero
entries in (?and thereby reducing the size of the param-
eter to be estimated directly.

4.3 Schur weighting
Consider the Schur or element-wise frequency weighted
curve fit error in (4) and rewrite this into

E,(uj,6) = S(Uj). * [A(f(ti~)-l, d)-lfi(~j, @)] (21)
3
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where the equation error E(wj, 0) was defined in
(14). Using a similar approach of iterative minimiza-
tion steps as used in section 4.1, the parame~er O in
A(<(wj)-l, 19)-1 in (21) is fixed to an estimate 13t_l ob-

tained from the previous step t– 1.Consequently, the
weighted equation error Es defined by

fi, (Wj, &_I,O):= S(wj). * [A(~(wj)-l, ~t-l)-lfi(wj,e)]

again indicates that the parameter 0 to be estimated
appears linearly. Finally, it can be verified (leaving out
the arguments wj, ~(wj )–1, ~t-1 and 6) that vec(~, )
can be rewritten into

vec(S. * [A–l G]) – diag(vec(S))[@~ @ A–1]vec(f3) (22)

by using-the r~sult of proposition 4.2. Hence, stack-

ing vec(~~(wj,ot–l,d)) row wise for each j c 1, ..., IV
will yields a similar expression for the minimizing ar-
gument O as given in (20). However, the matrix
GW in (20) now contains real and imaginary part

of vec(s(wj). * [A(~(wj)–l, &-l) G(~~)]), whereas pw
in (20) will consist of the real and imaginary part

of diag(vec(S(wj)) )[@(wj)~ @ A–l (((wj)–l, it–.-l)] for
j~l, ..., N. Hence, the same computational proce-
dure can be used to incorporate an element-by-element
weighted curve fit error (4) by a slight modification of
the matrices in (20).

5 Application to experimental data

5.1 Description of the wafer stepper system
The multivariable curve fit procedure discussed in this
paper is illustrated by curve fitting experimental data
obtained from a positioning system of a wafer stepper.

Fig. I: Schematic view of a wafer stage; 1:waferchuck,
2:laser interferometers, 3:linear motors.

A wafer stepper is a high accuracy positioning machine,
used in chip manufacturing processes and a schematic
view is depicted in figure 1. The wafer carries approxi-
mately 80 chips and is placed on a moving table, called
the wafer chuck, which needs to be positioned accu-
rately. The position of the wafer chuck on the horizon-
tal surface of a granite block is measured by means of
three laser interferometry measurements, whereas three
line= motors are used to position the wafer chuck. In
203
this way, the positioning system is considered to be a
multivariable system, having three currants to the lin-
ear motors as inputs and three position measurements
as outputs of the process.

5.2 Experimental results
Periodic random noise signals of 1024 points are used
to excite the system. Using the resulting averaged time
series, a spectral estimate is computed, resulting in a
finite number of frequency domain data points that
constitutes a suitable starting point for the subsequent
curve fit procedure.
As the resulting model has to be used for discrete
time control design purposes, the aim is to estimate
a possibly low order discrete time multivariable model,
that describes the dynamical behaviour of the position-
ing system in the frequency domain till approximately
400 Hz. For frequencies smaller than 100 Hz, the po-
sitioning system acts like a double integrator. To il-
lustrate the usage of weighting functions in order to
shape the curve fit error, an output weighting is used
that emphasizes the frequency range between 200 and
300 Hz and starts to roll off at 300 Hz. The order of
the resulting multivariable model (without the 3 dou-
ble integrators) is chosen to be 12, represented by a
full left polynomial matrix fraction description having
81 parameters.
The SK-iteration is started up by first estimating a high
order model to compute an initial value for the modified
output weighting ~out in (19). After this initialization,
the SK-iteration is invoked 8 times. The Bode ampli-
tude plot and phase plot of the 18th order estimate
(including the 3 double integrators) is depicted respec-
tively in figure 2 and figure 3. It should be noted that
the multivariable output weighting applied during the
estimation procedure emphasizes the frequency domain
area of interest.

6 Conclusions

An approach is presented to estimate a linear multivari-
able model on the basis of noisy frequency domain data
using a two-norm minimization of a weighted curve fit
error. The weighting on the curve fit error can be
specified by either an input/output or an element-by-
element frequency dependent multivariable weighting
function. The multivariable model is parametrized in
either a left or right polynomial matrix fraction descrip-
tion wherein structural parameters allow the specifica-
tion of both full polynomial or none-full polynomial de-
scriptions. The computational procedure is able to esti-
mate complex models by using an iterative procedure of
solving weighted multivariable least squares problems
and exploits the structure of the least squares prob-
lem, thereby reducing any computation and memory
requirements directly. The curve is demonstrated on
experimental multivariable frequency domain data ob-
tained from a Wafer Stepper system having 3 inputs
and 3 outputs.
4
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Fig. 2: Amplitude Bode pl~t of 18th order discrete
time model ~(ei~~, 0) and the data G(wj ).
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