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Summary

Bayesian Identification of Linear Dynamic Systems: Synthesis of Kernels in
the LTI Case and Beyond

In the last few years, new avenues of data-driven modeling or so-called sys-
tem identification have appeared due to the introduction of ideas stemming

from the field of machine learning. One set of methodologies clustered around
the so-called kernel based methods got serious attention in Linear Time Invariant
(LTI) system identification due to their interpretation from the Bayesian point of
view and their capability to realize an estimator that achieves regularization in
Reproducing Kernel Hilbert Spaces (RKHSs). Such achievements are made possible
via tailoring these learning techniques to dynamic systems by taking into account
dynamic properties as stability. It has been shown that these new regularization
based methods may outperform classical parametric approaches, i.e., maximum
likelihood and prediction error methods, for the identification of stable LTI sys-
tems. The key feature of these learning approaches is that they circumvent the dif-
ficulties of model structure and model order selection and introduce a continuous
optimization of the bias/variance trade-off based on a “nonparametric” form of
the utilized model structure. The degrees of freedom of the estimation is kept re-
stricted by incorporating prior knowledge of the unknown dynamic system, e.g.,
smoothness, stability, damping, resonance behavior, etc., through the kernel func-
tion that determines the hypothesis space for the estimation problem, i.e., which
encodes the utilized “nonparametric” model structure. Hence, the choice of this
kernel function is key to have a successful identification process in terms of a high
accuracy model estimate.

The available kernel functions for the identification of impulse responses of
LTI systems mainly focus on encoding smoothness and stability. These kernels
came from static function estimation and ad hocly modified to enforce the de-
cay of the estimated impulse responses without taking into account the dynamic
aspects of these responses. Hence, it is essential to introduce kernels which are
supported by system theory and allow for incorporating other dynamic proper-
ties, e.g., resonance behavior, into the kernel function. So, the resulting question
is:

Research question 1: How to systematically synthesize kernel functions for
linear systems that can encode/capture their dynamic behavior accurately?
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viii Summary

On the other hand, nowadays, with the rapid advancement of technology,
there is a growing need to accurately capture the increasingly Nonlinear (NL)
and/or Time-Varying (TV) nature of new application designs. Moreover, the per-
formance specifications of control systems, in terms of accuracy, reliability, robust-
ness, energy consumption, etc., have been seriously increased. Thus, LTI model-
ing becomes insufficient to support model based control design methods such that
the increasing performance specification can be fulfilled. On the other hand, deal-
ing with such complicated systems, e.g., NL/TV, without any kind of structure
is often found to be infeasible in practice in terms of modeling and control. Al-
ternatively, advanced linear models have been introduced in the literature, e.g.,
Piecewise Affine (PWA), Linear Time-Varying (LTV), Linear Parameter-Varying (LPV)
systems, etc. Among these models/classes, LPV systems, which can be seen as
an intermediate step between the well-known LTI systems and the complicated
NL/TV systems, have proven to provide an attractive framework to incorporate
NL/TV phenomena with a wide representation capability of complex physical
processes and at the same time preserve the linear structure of the representation,
offering extensions of powerful LTI control approaches. However, the identifica-
tion of the LPV model class is challenging task due to the difficulties associated
with parameterizing the structural dependencies of the model on the so-called
scheduling variable, denoted by p. This raises the following question:

Research question 2: How the promising approaches of Bayesian identification
can be extended beyond the LTI case, i.e., towards LTV and LPV systems?

The main goal of this thesis is to address the above-mentioned two research
questions. To answer these questions, this thesis focuses on presenting solutions
for the following subgoals:

• Systematic utilization of the prior knowledge of the dynamic properties of
the underlying system in the construction of kernels for Bayesian system
identification.

• Automatic model structure selection and optimization of bias/variance trade-
off of model estimates.

• For LTV and LPV systems:

– Capturing structural dependencies directly from data.
– Dealing with general noise scenarios in estimation.

To this end, this thesis includes the following contributions:

• Present a new class of kernel functions, which merges ideas from machine
learning and system theory, suitable for the identification of LTI systems in
both the time-domain, i.e., impulse response estimation, and the frequency-
domain, i.e., transfer function estimation, in a Bayesian setting. This class
of kernel functions is constructed based on Orthonormal Basis Functions
(OBFs) that can be completely characterized via their generating poles. In
this way, they offer a systematic approach to encode the expected dynamic
properties of the system or flexibly adjust the model structure to it.
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• Formulation of prediction error minimization for LTV and LPV systems from
the view point of nonparametric Gaussian regression. The presented frame-
work gives an interpretation of the estimation under a general noise sce-
nario affecting the identification process, e.g., varying Box Jenkins model
structures.

• A nonparametric Bayesian identification approach for series-expansion rep-
resentation models of LTV and LPV systems, utilizing Output Error (OE)
noise structure.

• A model structure learning approach for LPV models within the RKHS frame-
work that is capable of determining the suitable dynamic order of the model
(coefficient structure) and at the same time determine the underlying func-
tional dependencies directly from data, with no prior parameterization of
the p-dependent functions.
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1 CHAPTER

Introduction

This thesis addresses data-driven modeling of finite dimensional,
discrete-time and Linear Dynamic Systems (LDS). More specifically,

utilizing the new developments in system identification stemming from
the machine learning community, it addresses the open problems and as-
sociated challenges to efficiently deliver accurate linear models of the un-
derlying physical process. To motivate the presented work and to formu-
late the intended research questions, first, in Section 1.1, the main princi-
ples of system identification will be reviewed. Section 1.2 motivates the
interest in LDS and explores system classes beyond the classical Linear
Time-Invariant (LTI) concept. Next, in Section 1.3 machine learning tech-
niques that could be applied to dynamic systems are discussed. Then, the
available approaches to data-driven modeling of LDS are overviewed in
Section 1.4. The challenges and open problems of LDS identification are
discussed in Section 1.5. Next, a brief discussion on the importance of Or-
thonormal Basis Functions (OBFs) as a promising tool for addressing some
of these open problems are given in Section 1.6. The primary research
questions and the subsequent subgoals are presented in Section 1.7. Fi-
nally, this chapter is ended with a brief overview of the contents and the
main contributions.

1.1 Data-driven modeling of dynamic systems

Building a dynamic model based on first principle laws of physics, biology, chem-
istry, etc., requires detailed process knowledge from specialists, which might be
even impossible to obtain if the required knowledge of first principles is missing.
Such a modeling might also result in a highly complex mathematical description
of the considered system with the need to perform dedicated experiments to es-
timate the model coefficients. An efficient alternative is to derive a mathematical
model of the dynamic system on the basis of experimentally measured data. Such
an approach is known as data-driven modeling or so-called system identification.

1



2 Chapter 1 Introduction

Table 1.1: The identification cycle

Step 1. Experiment design, data collection, and data preprocessing.

Step 2. Selection of model structure and parametrization.

Step 3. Choice of the identification criterion.

Step 4. Estimation of a model that is optimal with respect to the criterion.

Step 5. Validation of the resulting model estimate.

The underlying process of system identification is often called the identification cy-
cle (Ljung 1999), see Table. 1.1 for the involved steps and Figure 1.1 for a pictorial
illustration. In the following, a brief overview of the involved steps is given in
order to support the subsequent discussion.

1.1.1 Identification cycle

Step 1. Experiment design and data preprocessing

The purpose of this step is to choose an excitation signal which is used to actuate
the considered system and produce an output that maximizes the information
content about the underlying dynamics in the measured Input/Output (IO) data.
Different aspects should be taken into account and reflected in the designed signal,
e.g., sufficient number of data points, sampling frequency, levels of operation,
etc. Two important requirements should be satisfied by the excitation signals: i)
persistency of excitation, i.e., the input signals produce an output response which
has enough information content to describe the dynamic relation of the system
and have enough information content to distinguish between different models
in the considered model class; ii) the practical applicability of the input signal,
more specifically, white noise inputs are rather classical, exciting all frequencies,
however, for a practical consideration, such input signals are often infeasible for
physical actuation, and other exciting signals should be considered, e.g., random
binary noises, frequency sweeps, multi-sines, etc.

Additionally, if the system is unstable or contains lightly damped dynamics it
may be necessary to decide to conduct the experiment in closed loop. Also, data
preprocessing such as removing outliers and the mean value of the signal and
the attenuation of noises and disturbances should be performed before using the
measured data for identification.

Dedicated experiments can also be used to detect and quantify the level of non-
linearity or time-variation exhibited by the system. These dedicated experiments
can also be used to decide which model class is the most appropriate in terms of
the utilization objective to capture the dynamics of the system.
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Invalidated

Ok

Figure 1.1: The identification cycle based on Ljung (1999).

Another important choice is the measurement setup itself used to gather ex-
perimental data. Such a choice has an impact on the modeling process and the
utilization of the model afterwards. For example, for control applications with
digital controllers, a Zero Order Hold1 (ZOH) setup is typically used and hence
the identification process is carried out with the aim to obtain Discrete-Time (DT)
models. Differently, Band Limited (BL) setup is used for physical interpretation
or to obtain models for the synthesis and tuning of controllers in CT and as a con-
sequence CT models should be utilized in model estimation. Hence, these choices
of data acquisition have consequences on the choice of the model structure, i.e.,
Step 2.

Step 2. Choice of the model structure

A model structure is a set of candidate models in which a suitable description of
the system is searched for. This step is considered to be the most crucial step of the
identification cycle. The selection of the model structure involves various aspects:
i) representation form, e.g., state-space, IO, series-expansion, etc.; ii) parameteriza-
tion and type of noise modeling. This includes postulating parametric models to
describe both process and noise dynamics, where the size of the model set is im-

1The ZOH device is a signal hold instrument providing a Continuous-Time (CT) signal which is
constant till the device is commanded to change it to a new value in a piecewise constant manner.



4 Chapter 1 Introduction

portant, e.g., the number of parameters and the order of the model structure, as it
largely affects the well-known bias/variance trade-off of the estimation, see Sec-
tion 1.1.2; iii) the complexity of the estimation algorithm that delivers the model
estimates, where undesired local solutions of the estimation and non-uniqueness
of the optimal solution need to be considered.

Step 3. Choice of the identification criterion

Various identification criteria can be considered. These can be seen as a math-
ematical formulation of the performance measure of the estimated models that
define the user’s purpose or expectation towards the model of the plant. The
most common criterion is to identify the model that provides the best one-step-
ahead predictions in terms of the smallest possible mean squared error between
the measured outputs and the predictions.

Step 4. Model Estimation

Once both the model structure and identification criterion have been chosen, the
next step is to solve the optimization problem associated with the identification
criterion to get the model estimate.

Step 5. Model (in)validation

When a model has been estimated it should be evaluated to decide whether the
model is “good enough” for the intended purpose of the user. To this end, another
experimental data set, which is not used in the estimation step and is known as
the validation data set, is often used with the estimated model to compute a pre-
dicted/simulated response and then compare it with the measurements based on
the same identification criterion or various other measures of model quality. At
this stage, it can be decided whether the estimated model is accepted or a re-
finement step is needed, which is accomplished by iterating and making more
appropriate choices, e.g., different model order, till the obtained model passes the
validation test.

1.1.2 Which system class and which parameterization?

Aiming at estimating a dynamic model that “best” describes the underlying phys-
ical process, two important decisions have to be taken. Firstly, the choice of a suit-
able system class, i.e., Linear (L), Nonlinear (NL) or Time-Invariant/Time-Varying
(TI/TV) dynamics. Such a selection largely depends on the dynamic behavior of
the process that we are dealing with. Moreover, the selected class affects the whole
identification cycle, specifically, the representation capability, computational com-
plexity, expected estimation accuracy, etc. Secondly, for the chosen system class, a
parameterized model needs to be postulated, where the structure and the order of
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that model are crucial choices, as has been discussed in the previous section. The
size of the parameterization introduces the well-known dilemma of bias/variance
trade-off. More specifically, by reducing model order, which often decreases the
number of the to be estimated parameters, the bias error increases while the vari-
ance error is decreased. On the other hand, by increasing model order, i.e., intro-
ducing more parameters, the bias error decreases at the expense of increasing the
variance.

In this thesis, we focus on data-driven modeling of Linear Dynamic Systems
(LDS) aiming at achieving an optimal trade-off automatically in terms of bias/
variance which leads to a fundamentally different look at system identification as
in the previously discussed classical setting. In the next section, we motivate our
interest in LDS, discussing the importance of Linear Time-Invariant (LTI) systems
and advanced linear model structures.

1.2 Why Linear Dynamic Systems?

Automatic control has been known and used for more than 2000 years (Bissell
2009). It is mainly about employing a “feedback” concept to guarantee the stability
and performance expectations of the underlying physical process. Motivated by
the observation that many physical systems exhibit linear behavior at the desired
operating points and that feedback linearizes the dynamics of the “closed-loop”
system, LTI models have been used extensively in practice to describe the dynamic
behavior of the considered systems. The LTI framework has become a mature
field in terms of both modeling and control design with vast industrial experience
accumulated through the years.

Nowadays, with the rapid advancement of technology, there is a growing need
to accurately capture the increasingly NL and/or TV nature of new application
designs, e.g., wafer scanner in lithography, modern process control, automotive
applications, etc., see Figure 1.2 for some of these applications. Moreover, the
performance specifications of control systems, in terms of accuracy, reliability, ro-
bustness, energy consumption, etc., have seriously increased. For example, the
moving stages of wafer scanner machines in lithography require fast and accurate
positioning in the nanometer scale. As a result, LTI modeling becomes insufficient
to support model based control design methods such that the increasing perfor-
mance specification can be fulfilled. On the other hand, dealing with such com-
plicated systems, e.g., NL/TV, without any kind of structure is often found to be
infeasible in practice in terms of modeling and control. Alternatively, advanced
linear models have been introduced in the literature that are aiming at describing
complex NL/TV behavior via a linear structure, e.g., Switched Affine (SA) (Djemai
and Defoort 2015), Piecewise Affine (PWA) (Paoletti et al. 2007), Linear Time-Varying
(LTV) (Marcovitz 1964), Linear Parameter-Varying (LPV) (Tóth 2010) systems, see
Figure 1.3.

In general, these linear system classes can be classified into two main cate-
gories according to the nature of switching-time/parameter variation: i) models
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Figure 1.2: Some examples of modern applications that exhibit NL/TV dynamics.
Upper left: wafer scanners used in lithography. Upper right: automobiles. Lower
left: aircrafts, e.g., F-16 Fighting Falcon. Lower right: modern process control.

LTI
LTV

LPV
PWA

SA

Figure 1.3: The linear system classes in the literature. These classes are aiming at
describing complex NL/TV dynamic behavior via a linear structure.

that are defined as collection of linear/affine models connected by switches that
are indexed by an additional discrete-valued variable, the so-called discrete state,
i.e., SA systems. The class of PWA systems are considered as a special case of SA
systems, where the discrete state is determined by a polyhedral partition of state-
input domain. These models are equivalent to several classes of hybrid systems
(Paoletti et al. 2007) with a wide scope of applications, e.g., regime switching in
power electronics (Aguilera et al. 2014); econometrics (Hamilton 1990); control ap-
plications (Yin et al. 2009), etc.; ii) models that have a time/parameter variation,
i.e., LTV/LPV models, respectively, due to a physical phenomenon or a schedul-
ing parameter that varies smoothly as a function of time. Some applications in-
clude aeroplane dynamics during take off and landing (Dimitriadis and Cooper
2001); control of crane dynamics (Abdel-Rahman et al. 2003), etc.

In the sequel, we consider the second class of systems, i.e., LTV/LPV system
classes. More specifically, in the sequel, we use LDS to refer to LTI, LTV and LPV
system classes. Among these models/classes, LTV/LPV systems, which can be
seen as an intermediate step between the well-known class of LTI systems and
complicated NL/TV systems, have proven to provide an attractive framework to
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Figure 1.4: The mechanism of gain-scheduling (Tóth 2008): interpolation of local
LTI models/controllers of the plant to approximate the global behavior on the
entire operation regime, i.e. scheduling space.

incorporate NL/TV phenomena with a wide representation capability of complex
physical processes and at the same time preserve the linear structure of the repre-
sentation, offering extensions of powerful LTI control approaches. Note that, LPV
systems are a natural extension of LTV systems. More specifically, for the LPV
system class, the trajectory of the scheduling signal is assumed to be not known in
advance, whereas for LTV system class the scheduling signal, i.e., time, follows a
known linear trajectory. Hence, the available techniques to deal with LPV systems
can be easily applied to the special case of LTV systems.

In many practical situations NL/TV systems can be well-approximated by lo-
cal LTI models that describe the behavior of the plant around some operating
points. Moreover, engineers working in industry prefer the application of LTI
control design as they have a vast experience to deal with such systems due to the
available attractive approaches of control design, e.g., optimal and robust control.
Inspired by these observations, the concept of LPV systems have been introduced
in Shamma and Athans (1992) through the idea of gain-scheduling. More specifi-
cally, the NL system is linearized at some operating points resulting in a collection
of LTI models of the plant. An interpolation function, known as scheduling func-
tion that depends on the current operating point, is used to deliver a global model
that describes the entire operating regime, see Figure 1.4 for a pictorial illustration
of the above-mentioned mechanism (Tóth 2008). An external and measurable sig-
nal, known as the scheduling signal and it is denoted by p, is used to describe the
change of the operating point. This interpolation of local linear dynamics is the
so-called local approach to obtain an LPV model of the plant which approximates
the original NL behaviour. Alternatively, it is possible to capture the whole be-
haviour of the NL system (without an approximation) by an LPV model through
the concept of embedding. The latter approach is called global modeling.

In mathematical terms, the considered class of systems, i.e., LDS, can be char-
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LPV

p

u y

Parameter variation

Figure 1.5: Input-Output signal flow of an LPV system. The dynamic relation-
ship between the input and the output of the system is linear, but depends on an
exogenous signal, the so-called scheduling signal.

acterized in DT2 with an Infinite Impulse Representation (IIR). More specifically, for
LTI systems the dynamic relation between the input signal u and output signal y
is a linear dynamic relation, which can be read as

y(t) =
∞∑
i=0

giq
−iu(t), (1.1)

where t is the discrete time, q denotes the forward time shift operator, i.e.,q−iu(t)=
u(t−i), y : Z→ RnY , where Z is the set of integers and R is the set of real numbers,
u : Z → RnU , and the coefficients {gi}∞i=0 are known as the Markov parameter
matrices. If the dynamic relation itself is dependent on time or an external signal,
the so-called scheduling signal p, then the resulting system classes are known as
LTV or LPV, respectively. For LPV systems, which is a generalization of LTV
systems as has been discussed before, the dynamic relation can be characterized
as a convolution in terms of u and p, which in DT can be read as

y(t) =
∞∑
i=0

gi(p(t))q−iu(t), (1.2)

where p : Z → P ⊂ RnP . Furthermore, the coefficients gi(p) are functions of the
scheduling variable that define the varying linear dynamic relation u and y. See
Figure 1.5 for the schematic view of such a relation. If the functions gi are assumed
to be dependent only on the instantaneous value of the scheduling signal, i.e.,
gi : P→ RnY×nU , then the underlying LPV system is said to have a static dependence
on p, otherwise, if gi are assumed to be dependent on the past values of p, i.e.,
gi : P× . . .×P→ RnY×nU , then the dependence is called dynamic. If the scheduling
signal p is replaced by t, the resulting system is known as LTV. For a constant
scheduling signal, i.e., p(t) = p̄ with p̄ ∈ P being a constant ∀t ∈ Z, (1.2) becomes
equivalent to the LTI system (1.1), where each gi(p) is constant and corresponds
to the i-th Markov parameter of that LTI system, i.e., gi. Thus, LPV systems can

2Note that, for the DT model to be equivalent to its original CT model all continuous free signals
(e.g. input signals) of the system are required to be generated by an ideal ZOH, i.e., they need to be
piecewise constant. For LPV systems, this condition is required to hold for both the input and the
scheduling signals (in a synchronized manner) Tóth et al. (2010).
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be seen to be similar to LTI systems, but their signal behavior is different due to
the variation of the gi parameters.

The LPV concept has been proven to be successful in many applications. It can
be said that control design for such class of systems has become a mature field,
offering many approaches, e.g., (Scherer 1996), that guarantee stability, optimal
performance and robustness over the entire operating regime expressed in terms
P. Moreover, from the representation capability, it has been shown that many
NL systems can be converted into an LPV form, e.g., (Abbas et al. 2014; Donida
et al. 2009). Motivated by these developments, LPV systems have found their
way to industry and gained popularity, e.g., in process control (Bachnas et al.
2014), aerospace applications (Marcos and Balas 2004), CD players (Dettori and
Scherer 2001), wafer scanners (Wassink et al. 2005), to name a few. With such ad-
vanced control design methods, accurate models are needed to support the avail-
able methods. A lot of work has been done regarding modeling and identification
of LPV systems aiming at delivering accurate models. However, the develop-
ments in that area/direction are still lagging behind control design with many
open problems and challenges that need to be taken into account due to the diffi-
culties associated with parameterizing the structural dependency of the model on
p.

1.3 The appearance of machine learning

Machine learning is concerned with the design of techniques that are able to au-
tomatically extract information and learn structure from data. An interesting sub-
area of machine learning is regression3, which is about estimating (learning) an un-
known function from a given set of observations. The classical approach to deal
with this problem, i.e., regression, is by postulating a finite-dimensional hypothe-
sis space, i.e., utilize a parametric model that depends on a finite-dimensional vec-
tor of parameters that are needed to be estimated from data. For instance, postu-
late a model that consists of a linear combination of a predefined set of basis func-
tions. Such an approach has some difficulties, e.g., the choice of an appropriate
set of basis functions and their number. These difficulties are circumvented by for-
mulating the problem as function estimation, possibly in an infinite-dimensional
space, i.e., by employing high order flexible models, the so-called nonparametric
models (Bishop 2006). The basic idea is to determine the right complexity of the
model, i.e., to determine both the basis functions and their effective number, from
data and high-level prior knowledge about the unknown function, e.g., smooth-
ness. Such knowledge is more relaxed and easier to be available than imposing
a specific structure on the model, which might be restrictive and limits the repre-
sentation capability of the model. The question now is how can we encode such
prior knowledge about the unknown function into the estimation problem?

The modern nonparametric approaches mainly use regularization techniques
introduced extensively in the so-called inverse problem literature (Tikhonov and

3Regression was originally developed in the field of statistics and has been extensively studied in
other fields, like machine learning.
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Arsenin 1977; Bertero 1989) in conjunction with Reproducing Kernel Hilbert Spaces
(RKHSs) (Aronszajn 1950; Schölkopf and Smola 2002), to control the flexibility
of the employed nonparametric models and ensure a well-posed solution. It has
been shown that for every RKHS, there is one and only one positive definite func-
tion, known as reproducing kernel or simply kernel function, denoted by K, (Aron-
szajn 1950). Moreover, it can be also shown that every function of the considered
RKHS inherits properties such as smoothness and integrability of the associated
kernel function. Hence, instead of characterizing a whole space, it is enough to
design a positive definite kernel function K that encodes the desired properties
of the function to be estimated and hence such properties will be inherited by all
the functions within the resulting RKHS. The design of the structure of K is con-
cerned with choosing a parameterized form of it with some unknown parameters,
the so-called hyperparameters, denoted by β, which can express a wide variety of
properties, but at the same time restrict the high degree of freedom by encoding
the expected properties, e.g., smoothness. Furthermore, it is important that the as-
sociated restrictions are sensitive to the choice of β, i.e., β can be efficiently used to
decrease the RKHS associated withK towards a set capturing the properties of the
unknown function. At the same time, β must be also low dimensional such that
its optimization can be efficiently performed. Such an estimation approach, i.e.,
regularization in RKHS, has also a statistical interpretation in a Bayesian setting,
i.e., in Gaussian Process Regression (GPR) (Rasmussen and Williams 2006). More
specifically, the unknown function is assumed to be a particular realization of a
zero-mean Gaussian process with a certain covariance function that is identical to
the kernel function K associated with the considered RKHS. This Bayesian set-
ting provides an efficient technique to estimate the unknown hyperparameters,
i.e., β, that parameterize the kernel function K from data, i.e., by maximizing the
marginal likelihood (Rasmussen and Williams 2006; MacKay 2003). This provides
automatic model structure selection whose efficiency depends on the choice of K
(Pillonetto and Chiuso 2015).

Such achievements can be extended to the identification of dynamic systems
to deal with the issues related to model order/structure selection. For instance,
the impulse response of an LTI system, i.e., gi in (1.1), can be seen as a func-
tion and estimated by regularization techniques from machine learning. How-
ever, the above-mentioned approaches are mainly suited for estimating nonlinear
functions, where the underlying relation is static and the utilized kernel functions
focus on imposing smoothness of the hypothesis space. Hence, the available ker-
nel functions in machine learning, e.g., Gaussian kernel (Rasmussen and Williams
2006), spline kernel (Wahba 1990), etc., are not directly suited for dynamic systems
identification, in terms of estimating their impulse responses, as the dynamic re-
lationship should be taken into account. For example, in addition to smoothness,
other dynamic properties should be encoded via the kernel function, e.g., stability
in terms of the decay of the impulse response, resonance behavior, etc.

In the next section, parametric identification of LDS and the recently intro-
duced regularization approaches to system identification of LDS is reviewed.
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1.4 Data-driven modeling of LDS systems

As has been explained in Section 1.1, the model structure selection is the most
crucial step in the identification cycle as it has a significant effect on the final
model estimates. This step involves many challenging decisions that need to be
taken, e.g., selection of model structure, model order, etc. At this stage, two main
streams of identification techniques can be distinguished, namely parametric and
nonparametric techniques. In parametric approaches, a finite-dimensional model
is chosen that depends on a prior chosen set of parameters. On the other hand,
nonparametric methods that originate from machine learning and use models of
possibly infinitely order, where the number of effective parameters is flexible and
is decided from data. Note that, the latter methods can be seen as an extension
of the “classical” nonparametric methods, which are known in system identifi-
cation for long time (Ljung 1999), e.g., frequency response and impulse response
estimation.

In this section, we discuss the available identification approaches to identify
LDS, specifically, in the LTI, LTV and LPV system classes, from both parametric
and nonparametric point of views.

1.4.1 Data-driven modeling of LTI systems

Time-domain

Data-driven modeling of LTI systems is a well-established field (Ljung 1999; Söder-
ström and Stoica 1989; Pintelon and Schoukens 2012), where the main stream es-
timation methods are:

1. Subspace approaches which are based on the numerically robust Singular
Value Decomposition (SVD) and Least-Squares (LS) techniques. Handling Multi-
Input Multi-Output (MIMO) systems is straightforward with these methods
and various numerically efficient implementation of these schemes are avail-
able (van Overschee and de Moor 1996; Chiuso 2007);

2. Set membership and worst-case identification (Milanese and Vicino 1991;
Helmicki et al. 1991), which have been introduced motivated by the need
to deliver models with hard bounds on model errors, i.e., to make use of
such models in robust control (Zhou et al. 1995). However, these techniques
might lead to conservative results (Hjalmarsson and Ljung 1994);

3. Maximum Likelihood/Prediction Error Minimization (PEM) (Ljung 1999; Söder-
ström and Stoica 1989) approaches. Such methods provide a well-understood
framework for consistency and stochastic interpretation of the model esti-
mates and offer a large class of plant and noise models.

PEM approaches have been considered as the dominant parametric technique for
identifying LTI systems for a long time (Ljung 1999; Söderström and Stoica 1989).
These methods typically include the following steps:
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1. Postulate a finite-dimensional parametric model structure;

2. Estimate parametric models of different orders by the minimization of the
quadratic loss-function, denoted in the sequel by l2, of the prediction error.

3. Choose the model order, i.e., one model among the set of estimated candi-
dates, based on any of the available model validation techniques as Cross-
Validation (CV) (Ljung 1999), Akiake Information Criterion (AIC) (Akaike 1974),
Bayesian Information Criterion (BIC) (Schwarz 1978), etc.

Theoretical properties of estimators obtained after model selection, the so-called
Post Model Selection Estimators (PMSEs), are generally hard to study (Leeb and
Pötscher 2005). Sample properties of PMSEs, such as impulse response estimators
or predictors, when tested on experimental data, may depart sharply from those
predicted by “standard” statistical theory, i.e., without model selection, which
suggests that PEM should be asymptotically efficient for Gaussian innovations.
See e.g., (Pillonetto et al. 2011a, Section 6) where PEM approaches, equipped
with model validation techniques have proven to deliver unsatisfactory results for
short and noisy observations. The choice of the model order is related to the well-
known bias/variance dilemma, i.e., low model order leads to under-modeling
and accordingly biased estimate and increasing the model order will lead to over-
parameterized models, which leads to estimates with high variance. As a result,
the obtained model will perform poorly when used to predict a new unseen input.

A different approach to deal with the bias/variance dilemma is to resort to
regularization. The main idea behind regularization is that instead of minimiz-
ing the variance of unbiased models, we allow for biased models with reduced
variance so to arrive at a smaller Mean Squared-Error (MSE). Some approaches are,
e.g., `1/Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani 1996),
nuclear norm (Hjalmarsson et al. 2012) and Non-Negative Garotte (NNG) (Breiman
1995). However, the tuning of the regularization parameter in real world applica-
tions of these methods is often found to be a difficult task. In Rojas et al. (2013),
an approach, the so-called SPARSEVA is proposed, which provides an automatic
tuning of the amount of regularization to ensure consistency of the regularized
estimator. However, `1 regularization is employed to perform parameter selec-
tion/order selection rather than optimizing the bias/variance trade-off. So, this
points towards automatization of classical model order selection into a single step
approach.

In the last few years, a new avenue of system identification have appeared due
to the introduction of ideas stemming from machine learning, i.e., regularization
techniques, known as kernel-based methods, see Section 1.3. Such achievements
are made possible by tailoring these learning techniques to dynamic systems by
taking into account dynamic properties as stability into the kernel function. It has
been shown that these new regularization based methods may outperform clas-
sical parametric approaches, i.e., PEM methods, in the identification of stable LTI
systems (Pillonetto et al. 2011a; Pillonetto and De Nicolao 2010; Pillonetto et al.
2014; Chen et al. 2012). The key feature of these learning approaches is that they
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circumvent the difficulties of model structure and model order selection and in-
troduce a continuous optimization of the bias/variance trade-off based on a non-
parametric form of the utilized model structure. The degrees of freedom of the
estimation is kept restricted by incorporating prior knowledge of the unknown
dynamic system, e.g., smoothness, stability, damping, resonance behavior, etc.,
through the kernel function that determines the hypothesis space for the estima-
tion problem, i.e., which encodes the utilized nonparametric model structure.

More specifically, in Pillonetto and De Nicolao (2010), a new kernel-based ap-
proach for stable LTI system identification has been introduced, where the im-
pulse response is modeled as a realization of a Gaussian Process (GP), whose co-
variance function includes information on Bounded-Input Bounded-Output (BIBO)
stability in addition to smoothness. The underlying paradigm, i.e., Bayesian ap-
proaches to identification, is much older, see, e.g., (Kitagawa and Gersch 1984,
1985, 1996) where the main interest has been the spectral analysis of time series
and (Goodwin et al. 2002, 1992) where a similar approach has been proposed to
quantify the under-modeling error, i.e., bias error. However, the real difference
compared to these previous Bayesian methods is that in Pillonetto and De Nico-
lao (2010); Pillonetto and De Nicolao (2011), a probabilistic prior is formulated
directly on the unknown impulse response. It has been shown that the minimum
variance estimate belongs to an RKHS, whose kernel function coincides with the
covariance function of the considered GP, see Figure 1.6 for a schematic view that
describes the main difference between the classical parametric and regularized
nonparametric approach to system identification (Pillonetto et al. 2011b). These
achievements have been realized by introducing a new class of priors, i.e., ker-
nel/covarinace function, the so-called Stable Spline (SS) kernels, which is a mod-
ified version of the well-known Spline kernel function (Wahba 1990) so that it in-
cludes information on BIBO stability. In Pillonetto et al. (2011a), this kernel-based
approach has been extended to the PEM setting, where a one-step-ahead predic-
tor form of the estimator has been formulated in the nonparametric setting. More
specifically, the resulting “optimal” form of the one-step-ahead predictor can be
seen as a system with two inputs (past outputs and inputs of the predicted sys-
tem) and one output (output predictions). Therefore, estimating the predictor for
LTI systems boils down to estimating two impulse responses.

Since the introduction of the SS kernel, it has become evident that the structure
of the kernel function and its representation capability to encode a wide range
of expected dynamic properties are the keys to further improve the efficiency of
these methods. Accordingly, many kernel structures have been introduced in the
literature to embed various prior knowledge, e.g., Diagonal kernel (DI), Diagonal
Correlated (DC), Tuned Correlated (TC) (Chen et al. 2012), Rank-1 kernel known as
Output Error (OE) kernel (Chen et al. 2013), constructive state-space models in-
duced kernels (Chen and Ljung 2014), to name a few. Moreover, in (Chen and
Ljung 2015b,c; Chen and Ljung 2016), two different methods of designing kernel
functions suitable for impulse response estimation are presented from a machine
learning and system theory perspectives. It is worth to mention that the above-
mentioned kernels are considered to be single structure kernels, and hence not
suitable to describe the dynamics of complicated systems with distinct modes,
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Parametric approach Nonparametric approach

Finite-dimensional 
model Infinite-dimensional space that 

contains the estimator of f

Space that contains the 
realization of  f

Figure 1.6: Left: Parametric approach to system identification. {Mi}3i=1 denote
finite-dimensional spaces of different complexity. Model order is typically cho-
sen by criteria such as AIC or BIC requiring the solution of a (possibly) nonlin-
ear optimization problem for each postulated model and relying upon likelihood
functions which are only asymptotically exact. Right: Nonparametric approach to
system identification using GPR. The unknown system is defined by a realization
from a zero-mean Gaussian random field f whose covariance (kernel) encodes the
prior knowledge, e.g., smoothness and stability. Model order selection is replaced
by estimation of few hyperparameters that parameterize the kernel, obtained by
optimizing a likelihood function that is exact, irrespective of the sample size, and
accounts for the uncertainty of f . Once such parameters are determined, the mini-
mum variance estimate of f is available in closed form and belongs to a (generally
infinite-dimensional) RKHS (Pillonetto et al. 2011b).

i.e., slow and fast modes. Thus, multiple structure kernels have been introduced
in (Chiuso et al. 2014; Chen et al. 2014), that handle such systems with multiple
and distinct time constants. In (Marconato et al. 2016, 2017), a different approach
to the above-mentioned Bayesian setting is introduced, where the prior knowl-
edge is injected at the cost function level instead of including such knowledge in
the kernel/covariance function itself. This allows to model low-pass, band-pass
and high-pass systems, and systems with one or more resonances. In Chen and
Ljung (2015a), regularization methods for impulse response estimation have been
extended to the more general Orthonormal Basis Functions (OBFs) model structure
estimation, where the generating poles of the OBFs are considered as hyperparam-
eters and are tuned within the considered Bayesian setting , i.e., by maximizing
the marginal likelihood, see Figure 1.7 for an overview of the available methods
for LTI systems identification.

There have been significant efforts spent on understanding and analyzing these
kernel functions to give more insights into the representation capability of various
dynamic properties, i.e., stability, over-damped, under-damped, multiple distinct
time constants, resonance behavior, etc., (Chen et al. 2016; Carli et al. 2017; Chen
and Ljung 2015c,b; Dinuzzo 2015; Chen et al. 2015). Such an effort has resulted
in characterizing the RKHSs associated with these kernels, i.e., like DC, TC, with
well-understood spectral decomposition, i.e., eigenvector-eigenvalue decompo-
sition that generalizes the eigenvector-eigenvalue decomposition of a positive-
definite matrix. Moreover, efficient algorithms for implementing these kernel-
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based methods for impulse response estimation have been studied in Carli et al.
(2012); Chen and Ljung (2013). More specifically, in Carli et al. (2012), an efficient
algorithm for the large scale scenario, i.e., data rich situation, has been proposed.
However, this method mainly works for a family of kernel functions that have a
well-defined spectral decomposition, e.g., SS kernels, whereas the approach pro-
posed in Chen and Ljung (2013) relies on a QR factorization technique to effi-
ciently and accurately evaluate the cost function involved in the marginal like-
lihood optimization. Furthermore, the presented approach in Chen and Ljung
(2013) can deal with both large data sets and possibly ill-conditioned computa-
tions.

Frequency-domain

It has been shown that identification in time- and frequency-domain can be seen as
equivalent problems as the involved data carry the same information (Schoukens
et al. 2004). However, such information is represented differently, hence, it may
be easier to access it in one domain than in the other. Therefore, in the following,
we also cover frequency-domain identification of LTI systems.

Nonparametric estimation of Transfer Functions (TFs) of LTI systems provides
valuable information about the dynamics of the system under consideration that
can be used further to obtain an accurate parametric model through model vali-
dation and model selection (Ljung 1999; Pintelon and Schoukens 2012). The eval-
uation of the TF on the unit circle will be called Frequency Response Function (FRF)
and it has been studied extensively in the literature (Antoni and Schoukens 2007;
Pintelon and Schoukens 2012), to name a few.

One main challenge in the data-driven estimation of FRF is the transient effect,
which is due to the fact that the input and output signals are not periodic or their
periodicity does not match the length of the measurement window. As a result,
most of the available approaches try suppressing the transient effect in different
ways. More specifically, via spectral analysis as in Schoukens et al. (2006), or via a
frequency-dependent smoothing procedure that is applied to the Empirical Transfer
Function Estimate (ETFE) (Stenman et al. 2000). More recent approaches are esti-
mating both the FRF and the transient simultaneously (Pintelon and Schoukens
2012), e.g., the Local Polynomial Method (LPM) (Pintelon et al. 2010a,b), which uses
a local polynomial smoother, and the Local Rational Method (LRM) (McKelvey and
Guérin 2012), which uses a local rational function as a smoother. Note that both
methods, i.e., LPM and LRM, provide a set of local models centered around the
bins of the used Discrete Fourier Transform (DFT), where the interpolation between
the DFT bins is still an open question. As a consequence, the stability of their es-
timates is not defined. Alternatively, inspired by new developments in nonpara-
metric estimation of LTI impulse response models in the time-domain (Pillonetto
et al. 2014; Chen et al. 2012), regularized frequency domain estimates of both the
FRF and the transient effects within the GPR framework has been introduced in
Lataire and Chen (2016). More specifically, both the FRF and the transient are as-
sumed to be a realization of a zero-mean real/complex GP (Schreier and Scharf
2010) with a certain covariance (kernel) function that encodes the relevant prior
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Figure 1.7: Available methods of LTI identification in the time-domain with some
representative references.
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knowledge about the system, e.g., smoothness and stability, etc. The direct formu-
lation of the estimation problem in the frequency domain offers many advantages:
i) it allows the estimation to be performed in a limited frequency band; ii) it allows
for an efficient implementation for continuous-time systems.

One critical aspect that is related to the aforementioned approach is the design
of the kernel function. It has to be flexible enough to describe a wide range of
dynamic properties, e.g., stability, resonance behavior, damping, etc., and, at the
same time, are parameterized by a small number of hyperparameters. In Lataire
and Chen (2016), the kernels from the time-domain, e.g., DC, SS kernels, have been
formulated in the frequency-domain. Moreover, it has been shown that for both
of these kernels the resulting estimates are stable, i.e., all poles of the estimated
FRF lie inside the unit circle.

1.4.2 Data-driven modeling of LTV systems

In the following, we briefly overview identification of LTV systems as a special
case of LPV systems.

Significant efforts have been spent on developing efficient identification ap-
proaches for LTV systems from data. Differently from the LTI case, special at-
tention has to be paid to both the parameterization of the dynamics and time-
variation, see the introduction of (Pintelon et al. 2015) for the classification of the
available techniques for LTV system identification.

Parametric identification techniques in the time-domain include, e.g., (Spiri-
donakos and Fassois 2009; Tsatsanis and Giannakis 1993; Verhaegen and Yu 1995),
and in the frequency-domain, e.g., (Lataire and Pintelon 2011), where systems are
usually described by differential (or difference) equations with time-dependent
coefficients. Nonparametric techniques have also been introduced in this setting,
e.g., (Lataire et al. 2012) and the references therein.

Alternatively, in Pillonetto (2008), the estimation of Continuous-Time (CT)-LTV
state space models in the time-domain has been formulated as a regularization in
RKHS. However, a matrix differential equation must be solved at each iteration
of the algorithm. Whereas, in Lataire et al. (2017), a kernel-based approach has
been proposed to identify CT-LTV models, where the time-varying coefficients are
identified nonparametrically. Furthermore, to avoid approximating time deriva-
tives, a mixed time- and frequency-formulation is adopted. Moreover, Bayesian
approaches for LTI models have been successfully extended to the LTV case. More
specifically, a SS-based estimator to identify LTV systems has been considered in
Pillonetto and Aravkin (2014), where an additional hyperparameter has been in-
cluded that plays the role of a forgetting factor which can be optimized in the
considered Bayesian setting via maximizing the marginal likelihood. An online
identification approach of TV systems in Bayesian setting, that extends the re-
cently introduced kernel-based methods from the LTI framework (Pillonetto and
De Nicolao 2010), has been introduced in Prando et al. (2016). A forgetting factor
is used to track the TV nature of these systems. Moreover, to cope with the real-
time constraints associated with updating the model hyperparameters in such a
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scenario, i.e., online identification, these hyperparameters are updated with a one
gradient step in the marginal likelihood optimization.

1.4.3 Data-driven modeling of LPV systems

Motivated by the need for accurate and low-complexity LPV models to exploit
the available control synthesis approaches in practice, a wide range of LPV iden-
tification approaches have been developed in the past years (Tóth 2010). In gen-
eral, for such a procedure to be successful, two main ingredients are needed: data
containing measured information about the dynamics of the system, and prior
knowledge in the form of assumptions on the expected behavior of the system.
One of the most important of these is the selected model structure and the cor-
responding model set within which the identification method should find an es-
timate of the plant. Most identification methods dedicated to LPV modeling in
the literature a priori assume a given suitable model set and focus on the estima-
tion process whether the problem is formulated in a state-space form (e.g., (van
Wingerden and Verhaegen 2009; Sznaier and Mazzarro 2003)), series-expansion
including IIR, expansion in terms of OBFs (Tóth 2010) or IO representation (e.g.,
(Bamieh and Giarré 2002; Laurain et al. 2010; Piga et al. 2015)). However, the
selection of this suitable set is rather complicated in practice as it is outmost de-
sired to estimate an accurate model of the real system in terms of the utilization
objective using as few parameters as possible (parsimony principle). Note that accu-
racy of estimated models is often also affected by the size of the parametrization in
terms of the achievable limit on the variance of the model estimate. In this respect,
the LPV modeling problem exhibits two main challenging issues: (i) the classical
questions of determining the “suitable” dynamic order of the model, input delay
and noise structure; (ii) to determine the underlying functional dependency of the
coefficients on p such that they have the least possible complexity for adequately
representing the variation of the dynamics.

In the following, we focus on LPV-IO models, where almost all the existing
parametric approaches are formulated in DT and static dependence on p is as-
sumed. Most of the well-known methods of LPV-IO identification are summa-
rized in the following discussion.

Traditionally, the problem of estimating an LPV model on the basis of data is
addressed within the parametric setting. In this setting, the underlying functional
dependency of the coefficients on p is parameterized in terms of a priori chosen
set of basis functions, e.g., polynomials, trigonometric functions, etc. The next
step is to estimate the associated parameters with the assumed model structure.
Two main categories can be distinguished: i) the local approaches, that rely on the
gain-scheduling concept, where a set of LTI models, the so-called “frozen models”,
are identified at constant scheduling trajectories and then interpolated to deliver
a global model (Zhu and Xu 2008; Zhu and Ji 2009; Bachnas et al. 2014), and ii)
the global approaches where a parameterized LPV model structure is identified
directly based on a global data set with varying scheduling trajectory. Various
approaches that fall within the second category, i.e., the global approaches, are
summarized below. Set membership methods from the LTI framework have been
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also applied to LPV systems, where the noise is treated as deterministic uncer-
tainty (Belforte et al. 2005; Cerone and Regruto 2008). In the PEM framework,
which has been successfully extended to the LPV case (Tóth et al. 2012a), all the
well-known noise model structures from the LTI literature are also formulated for
LPV systems, e.g., Auto-Regressive models with eXogenous input (ARX), OE, Auto-
Regressive Moving Average model with eXternal signal (ARMAX), Box Jenkins (BJ)
model structures, and series-expansion models including IIR and OBFs models.
Within this framework, identification boils down to perform a linear regression
in case of ARX and OBFs model structures, when the underlying dependencies
are parameterized linearly in terms of a priori chosen basis functions (Bamieh and
Giarré 2002; Giarré et al. 2006; Wei 2006; Tóth et al. 2009b, 2011a). Moreover, in
case of LPV-OBFs model structure, a suitable set of OBFs has to be chosen that has
a wide representation capability over the whole scheduling domain. To cope with
the latter issue, in Tóth et al. (2009a, 2011a), a selection scheme of the basis func-
tions known as Fuzzy Kolmogorov c-means clustering (FKcM) algorithm, which is a
joint application of the Kolmogorov n-width (KnW) theory (Oliveira e Silva 1996)
and Fuzzy c-Means (FcM) clustering (Jain and Dubes 1988), has been proposed
that is capable of asymptotically estimate the optimal set of OBFs, based on the
availability of a collection of pole locations that are obtained from the local linear
behavior of the LPV system.

In case of more general noise model structures, e.g., OE, ARMAX and BJ, a
nonlinear optimization problem is needed to be solved to get the model estimate.
Such an optimization can be solved by employing for instance gradient-based min-
imization approaches (Zhao et al. 2012). However, such approaches can have se-
rious issues with local minima and computational complexity. A pseudo linear
regression is an alternative to the computationally expensive nonlinear optimiza-
tion (Tóth et al. 2011a). However, the statistical analysis of the results in that case,
i.e., pseudo linear regression, is difficult due to the iterative nature of the pro-
cedure (Tóth et al. 2012a). Alternatively, Refined Instrumental Variable/ Simplified
Refined Instrumental Variable (RIV/SRIV) methods (Tóth et al. 2012c; Laurain et al.
2010) have been extended to deal with LPV-BJ models, where the noise model is
assumed to have LTI dynamics.

If the number of basis functions that are needed to parameterize the coeffi-
cient functions are not known a priori, a possible solution is the use of a model
structure where the functional dependencies are parameterized in terms of an ex-
tensive set of basis functions such that the structure is capable of explaining a rich
set of possible dynamics, where the appropriate sub-structure is decided from
data. Such a decision is commonly achieved by employing model structure se-
lection tools AIC, BIC, CV, etc. These tools can be seen as imposing a sparsity
pattern on the parameters, because they determine a model sub-structure (where
the estimated model should be found), by forcing some of the parameters of the
overall model to be zero. Due to the size of parametrization in the LPV case, ap-
plication of these selection tools on real-world-sized problems quickly becomes
infeasible. Hence, to achieve structural selection via enforcing a sparsity pattern,
`1 regularization based sparse estimators and shrinkage methods methods such
as the NNG (Breiman 1995), the LASSO (Tibshirani 1996) and SPARSEVA (Rojas
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et al. 2013) have been extended and successfully applied in the LPV case, see Tóth
et al. (2009c, 2012b). Although, these methods are capable of achieving model
structure selection in terms of the main challenging issues associated with LPV
modeling, their efficiency strongly depends on adequate a priori selection of the
basis functions which is left to rest on the shoulders of the user, see Figure 1.8
for an overview of the available parametric approaches for the identification of
LPV-IO models.

Similar to the LTI case, this points towards automatization of classical model
order selection, where such a selection is performed together with detecting struc-
tural dependency from data. One approach to avoid the dilemma of parameter-
izing the coefficient function is to resort to nonparametric methods. In (van der
Maas et al. 2015, 2016a), (van der Maas et al. 2016b), a nonparametric FRF mod-
eling of LPV systems has been presented, where the behavior of an LPV system
is assumed to be a smooth function of the frequency as well as the scheduling
variable. Moreover, in Hsu et al. (2008), a nonparametric approach based on dis-
persion function method has been proposed, where no prior knowledge of the
underlying dependencies is required. However, such an approach does not allow
for the incorporation of prior knowledge (if available), which might result in a
more accurate estimate, into the estimation problem. Furthermore, the considered
noise model is restricted to the LPV-ARX model structure. Alternatively, differ-
ent regularization techniques, have been used to identify nonparametric models
of LPV-IO systems. Specifically, the so-called kernel-based methods, which offer
attractive approaches to capture the underlying dependencies directly from data
without specifying any parameterization in terms of fixed basis functions. In these
methods, a kernel function is introduced that acts as a basis generator driven by
observed data. The main kernel-based approaches of LPV nonparametric iden-
tification in the literature are: i) Least Squares-Support Vector Machine (LS-SVM)
methods (Vapnik 1998; Suykens et al. 2002), where the considered models are re-
stricted to LPV-ARX noise models, e.g., (Tóth et al. 2011b; Piga and Tóth 2013;
Duijkers et al. 2014). An extension of these methods in case of the presence of
uncertainty in the scheduling signal has been introduced in Abbasi et al. (2014).
Furthermore, to preserve the attractive properties of these approaches and in the
same time overcome the drawbacks in the estimation of LPV models in a general
noise setting, an IV-LS-SVM method has been introduced in Laurain et al. (2012).
It has been shown that such an extension, i.e., IV-LS-SVM, results in unbiased es-
timates for a general noise setting on the expense of increasing the variance; ii)
GP methods (Rasmussen and Williams 2006), where a confidence quantification
of the estimate is available in addition to an automatic way to tune the unknown
hyperparameters, that parameterize the kernel function, from data via marginal
likelihood optimization (Golabi et al. 2014, 2017). However, the considered mod-
els are restricted to LPV-ARX noise models. An extension of these methods in
case of the presence of uncertainty in the scheduling signal, i.e., additive noise on
p, has been introduced in Abbasi et al. (2015). See Figure 1.9 for a schematic view
of the available nonparametric methods of LPV-IO models.

The above-mentioned kernel-based methods have been successfully extended
to LPV state-space models, under the assumption that the states are measurable,
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Figure 1.8: Available parametric methods of LPV-IO identification with some rep-
resentative references.
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Figure 1.9: Available methods of nonparametric identification of LPV-IO models
with some representative references.

offering a solution for estimating the dependency structure from data, e.g., LS-
SVM (Lopes dos Santos et al. 2014; Rizvi et al. 2015b), IV-LS-SVM (Rizvi et al.
2015a). Recently, the restriction of a known state signal has been overcome via the
application of Kernelized canonical correlation analysis (Rizvi et al. 2017).

1.5 Challenges and open problems

In the previous section, we have discussed the classical/parametric approaches to
identify LDS based on observed data and we have seen the challenges associated
with these approaches as model structure and order selection. Moreover, we have
discussed machine learning techniques that have been extended to identification
of LDS to tackle the above-mentioned challenges. However, to have a successful
identification process based on these machine learning techniques, the most cru-
cial step is the design of an appropriate kernel function that has a simple structure
and at the same time has the capability to represent a wide range of expected dy-
namic properties of the unknown system. Such a design task becomes even more
challenging for advanced linear models, i.e., LPV-IO models. The most crucial
challenges and open problems are collected into the following list:

1. The available kernel functions for identifying LTI systems mainly focus on
encoding smoothness and stability. These kernel functions have been bor-
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rowed from static function estimation, where the main focus is to encode
smoothness, then they have been modified to enforce stability constraints
without taking into account the dynamic aspects of the to be captured sys-
tem. Hence, it is essential to introduce kernels for linear systems which are
supported by system theory and allow for the incorporation of other dy-
namic properties, e.g., resonance behavior, into the kernel function.

2. The available nonparametric estimators for LPV systems only consider a re-
strictive noise model structure, i.e., the LPV-ARX model structure. A com-
putational efficient extension to the more general p−dependent noise model,
i.e., LPV-BJ setting, is missing in the literature.

3. Most of the kernel-based methods, e.g., GP methods, for linear systems are
restricted to IO and IIR models. However, as an extension of IIR mod-
els, OBFs model structure enjoys a wide representation capability, but have
some issues associated with their identification from data: i) the choice a
suitable set of OBFs; ii) parameterizing the coefficient functions; iii) guaran-
teeing the convergence of the estimated expansion; iv) handling the possible
dynamic dependency on the scheduling signal. In line with the concepts in
Chen and Ljung (2015a), it is essential to investigate how to extend kernel-
based methods to such model structures both in the TV and PV cases.

4. In LPV nonparametric identification, kernel-based methods offer a solu-
tion for estimating the underlying structural dependency directly from data.
However, the classical problem of selecting the model structure, i.e., model
order, number of coefficient functions, delay, etc., has not been addressed
like in the LTI case leaving the complexity/accuracy trade-off open.

1.6 Perspectives of OBFs based kernels

OBFs are a complete orthonormal basis functions for the space RH 2, which is
the Hilbert space of complex functions that are square integrable on the unit circle
and analytic outside of it (Heuberger et al. 2005; Ninness and Gustafsson 1997).
Their correspondence, i.e., the inverse Z−transform of these functions, in time-
domain span a complete orthonormal basis forR`2 which is the space of squared
summable real-valued sequences. These OBFs are generated by a cascaded net-
work of all-pass functions, which are completely characterized, modulo the sign,
by their generating poles. The spaces spanned by OBFs are RKHSs with a well-
defined reproducing kernel, which is directly defined by the OBFs.

The OBFs provide a systematic way to represent dynamic systems with a long
history of analysis in system theory (Ninness and Gustafsson 1997; Heuberger
et al. 1995; Patwardhan et al. 2006; Nalbantoglu et al. 2003). There have already
been few attempts to introduce OBFs based kernels for impulse response esti-
mation in the Bayesian setting, e.g., (Chen and Ljung 2015a). However, the pro-
posed OBFs based kernels do not perform well compared, e.g., with the TC ker-
nel, as shown in (Chen and Ljung 2015a, Section V). Moreover, the formulation
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of these kernels in the frequency-domain has been also given (Chen and Ljung
2015a, Equation 17). However, the stability of the estimated FRF by using such
kernels has not been discussed. Furthermore, the problem of choosing the proper
number of basis functions to be used has not been addressed, which hampers the
utilization of this idea in the Bayesian estimator.

In this thesis, we show how the attractive properties of OBFs can be used to
fill in the gap between data-driven modeling of dynamic systems and machine
learning approaches.

1.7 Research questions and goals

In the previous part, it has been discussed that machine learning approaches,
when tailored to dynamic systems identification by including the stability con-
straint, can provide a better bias/variance trade-off and could, in many cases, out-
perform classical approaches. However, kernel functions that can systematically
describe other dynamic properties are missing from the literature. This results in
the following problem statement:

- Research question 1 -

How to systematically synthesize kernel functions for linear
systems that can encode/capture their dynamic behavior ac-
curately?

On the other hand, we have discussed that LTI modeling becomes insufficient
to support model-based control techniques under the need to address NL/TV be-
havior in recent applications. We have also mentioned that such complex behavior
can be described with advanced linear models, i.e., LPV models that can be seen
as an intermediate step between LTI and NL/TV systems. However, identification
of LPV model class is a challenging task due to the difficulties associated with pa-
rameterizing the structural dependencies of the model on the so-called scheduling
variable and selecting the model structure/order, number of coefficient functions,
delay, dealing with general noise scenarios, etc. This raises the following question:

- Research question 2 -

How the promising approaches of Bayesian identification can
be extended beyond the LTI case, i.e., towards LTV and LPV
systems?

The main goal of this thesis is to address the above-mentioned two research ques-
tions. To answer these questions, this thesis focuses on presenting solutions for
the following subgoals:
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1. Systematic utilization of the prior knowledge of the dynamic properties of
the underlying LTI system, e.g., stability, resonance behavior, etc., in con-
struction of kernels for Bayesian system identification. More specifically, in-
vestigate how OBFs based kernels can support machine learning-based ap-
proaches in dynamic system identification both in the time- and frequency-
domains.

2. Investigate how to extend the Bayesian methods for LTI system identifica-
tion to LPV models under a PEM setting and how to handle general noise
scenarios.

3. Investigate how kernel-based methods can be extended to the identification
of series-expansion models, e.g, LPV-IIR and LPV-OBFs model structures,
to tackle the challenges associated with the identification of such models.

4. Investigate how to jointly reconstruct the scheduling-variable dependencies
and the model order (coefficient structure) directly from data, with no prior
parametrization of the p-dependent functions.

In the following, these subgoals are explained in more details.

Subgoal 1

Kernel-based methods provide an attractive framework for identification of LTI
systems both in the time- and frequency-domain. However, constructing a ker-
nel function that can, systematically, describe a wide range of dynamic proper-
ties with a low-dimensional parameterization is still missing from the literature.
With OBFs, the dynamic properties are directly encoded via the generating poles
of these basis. However, when utilizing the OBFs model structure or construct-
ing a kernel function based on OBFs for the purpose of system identification, we
face two issues: i) the choice of an appropriate set of OBFs, that has represen-
tation capability of the underlying system; ii) the choice of an effective number
of these basis functions. These two issues are completely related to each other,
i.e., with a “wrong” choice of the basis, a long expansion is needed while with
a “well-chosen” basis, a short expansion is sufficient to achieve the same predic-
tion capability. We are aiming at having a data-driven approach to decide on both
issues.

Subgoal 2

It has been discussed that Bayesian methods for impulse response estimation has
been extended to the PEM setting in the LTI case, i.e., to estimate a nonparametric
model for the “optimal” predictor. Such an approach is followed to avoid model
structure selection and to deal with general noise scenarios. In the LPV case, next
to the similar questions of model order and noise structure selection, the question
of model parameterization becomes even more involved as it also includes the
question how to parameterize the dependency of the model on the scheduling
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variable. To make correct decisions regarding the latter problem a lot of prior
knowledge is needed which is not often available in many practical applications.
Hence, it is important to investigate how the Bayesian approach of the LTI case
can be extended to the LPV case delivering completely structure-free learning of
the dynamic relation that includes the data-driven estimation of the dependency
structure on the scheduling variable. Such a setting, if properly formulated, can
provide an efficient way to handle LPV model estimation even under a general BJ
noise scenario.

Since we are aiming at Bayesian estimation of LPV models in a predictor form,
it must be investigated how to design a kernel function that encodes the prior
knowledge about the considered predictor, e.g., stability, possible class of struc-
tural dependencies on p. Furthermore, in order to present solutions to practi-
cal situation, which involve MIMO systems, the above-mentioned investigations
should be performed in the MIMO setting.

Subgoal 3

In the LTI case, OBFs model structures offer an attractive methodology to accom-
plish data-driven modeling and even further enhancements of the Bayesian meth-
ods as discussed in Subgoal 1. To have a successful identification process with
these models, a suitable set of OBFs needs to be estimated. The Bayesian frame-
work provides an approach to estimate these OBFs from data and at the same
time keep the variance of the estimated expansion coefficients low. Since utiliza-
tion of OBFs model structures is also attractive in the LPV case due to their wide
representation capability, it is highly relevant to investigate how the Bayesian ap-
proach to identify LTI-OBFs model structures can be extended to the LPV-OBFs
model structures. By that, we are also aiming at tackling the problems associ-
ated with the parametric identification of these model structures. This involves
synthesis of a suitable kernel function that can encode: i) expected structural de-
pendency of the expansion coefficients on p; ii) stability of the underlying system,
i.e., to guarantee the convergence of the estimated expansion.

Subgoal 4

The main motivation for Subgoals 2 and 3 is to avoid the problem of model or-
der, noise structure selection and parameterization of the coefficient dependen-
cies by employing Bayesian approaches to obtain a nonparametric estimate of the
underlying dynamic relation of the data-generating system. In the LTI case, the
resulting impulse response models can be directly and efficiently realized in other
representation forms like IO or state-space models to be further utilized, e.g., for
control synthesis. However, in the LPV case, the involved realization and model
reduction theories are too complex and applicable for only low truncation orders
of the involved IIRs. Hence, it becomes a question how to achieve nonparametric
identification of LPV models, e.g., in an IO form directly, where the underlying
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dependencies of the coefficients are estimated as functions, but at the same time
tackle model structure selection directly from data.

Note that in the LPV literature there has been already attempts to achieve
structure selection or nonparametric learning of the coefficient dependencies but
this has never been accomplished in a joint fashion. Hence, it is important to inves-
tigate how regularized methods can be extended to the identification of LPV-IO
models to resolve the above mentioned challenge in a nonparametric setting.

1.8 Overview of the contents and results

Next to this introduction chapter and the conclusions in Chapter 7, this thesis
consists of five chapters. Figure 1.10 presents an overview of the chapters and the
relation among them.

The introductory Chapter 2 is devoted to introduce key system theoretic no-
tions for LTI systems. Moreover, we give a brief introduction to the Hilbert and
Hardy spaces that are related to LTI systems. The second part of this chapter is de-
voted to the concept of OBFs, their definitions in the time- and frequency-domain
and the spaces spanned by them. Finally, we briefly discuss the classical PEM
setting of identifying LTI models.

Chapter 3 is devoted to the introduction of kernel-based methods in machine
learning. First, we define the regression problem from both its classical and regu-
larization points of view. We also introduce the statistical interpretation of kernel-
based methods from the Bayesian perspective. We then provide a brief discussion
on the numerical implementation and computational complexity of these meth-
ods. Finally, we discuss the connection between regularization in RKHS and GPR.
The importance of this chapter is that it introduces the basic concepts from ma-
chine learning required for developing new tools for dynamic system identifica-
tion.

In Chapter 4, we introduce a novel class of kernel functions based on OBFs,
which are able to describe a wide range of dynamic properties in a systematic
way. First, we discuss the modifications that are needed to be accomplished in
kernel-based methods to make them applicable to dynamic system identification,
i.e., imposing the stability constraint in the kernel function. Then, we introduce
OBFs based kernels both in time-domain to identify impulse response models and
in frequency-domain to identify the FRF of a stable LTI system. This provides a
direct answer for Subgoal (1). This chapter is based on the papers Darwish et al.
(2017d, 2015b, 2017c).

In Chapter 5, first, we briefly review the classical PEM framework for LPV sys-
tems. Then, we extend Bayesian identification of LTI systems under a PEM setting
to LPV systems. More specifically, we consider a MIMO LPV data-generating sys-
tem affected by p−dependent noise dynamics, i.e., an LPV-BJ setting. First, we
follow a Bayesian approach to identify the one-step-ahead predictor in a GPR set-
ting, where the one-step-ahead predictor can be seen as a summation of two sub-
predictors associated with the input and output signals. The main contribution is
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the design of suitable kernel functions that can encode the prior knowledge about
these sub-predictors taking into account their specific dynamic and dependency
structures. This provides a direct answer for Subgoal (2). Finally, the presented
Bayesian approach from the previous part is extended to series-expansion models,
i.e., LPV-IIR and LPV-OBFs models. More specifically, we summarize the identifi-
cation of LPV-OBFs models and discuss the associated challenges with identifying
these model structures, e.g., the choice of a suitable set of OBFs and the need to
guarantee the convergence of the estimated expansion. Then, we show how such
challenges can be tackled in a Bayesian setting. This provides direct answers for
Subgoals (2) and (3). This chapter is based on the papers Darwish et al. (2017a,
2015a, 2017b).

In Chapter 6, we formulate a unified framework for the identification of LPV-
IO models in an RKHS setting, where both model order and structural dependen-
cies are estimated from data. This provides a direct answer for Subgoal (4). This
chapter is based on the paper Laurain et al. (2017).
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2 CHAPTER

LTI Systems and OBFs

This chapter is devoted to the introduction of representation, model-
ing and identification of LTI systems and of a general class of OBFs.

Section 2.1 presents the class of LTI systems along with the correspond-
ing representation forms, while the related Hilbert and Hardy spaces are
introduced in Section 2.2. In Section 2.3, a brief introduction to a general
class of OBFs is given followed by the classical approach for modeling
and identification of LTI systems in Section 2.4.

2.1 LTI systems

A dynamic system, in a mathematical sense, can be seen as a mapping or an op-
erator that assigns an output signal to a certain input signal (or variables that can
be treated as input signals), in the sense that the output is completely determined
by the input and initial conditions. See Figure 2.1 for a visual description, where
u is the input, y is the output and G denotes a dynamic system. In this section,
we consider the class of LTI systems, which is considered the simplest dynamic
systems. Systems within this class have been successfully used in an enormous
number of engineering applications to describe or approximate a wide range of
physical phenomena. More specifically, we focus on Finite Dimensional LTI (FD-
LTI) systems, denoted in the sequel by F , whose time-invariant signal relations
can be described by a real-rational and proper transfer function.

Gu y

Figure 2.1: Block diagram of the dynamic system G.
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2.1.1 Representations of LTI systems

An FD-LTI system can be represented in different representations (forms), e.g., ra-
tional transfer function, impulse response, state-space, etc., with different degrees
of representation efficiency, i.e., in terms of the required number of coefficients to
represent a system in the considered domain with a certain level of accuracy. In
the following, we present different representations of FD-LTI systems.

Consider a DT FD-LTI system F as

y(t) = G(q)u(t), (2.1)

with y : Z → RnY and u : Z → RnU such that the system F is represented by the
transfer operator G(q) and

G(q) =
∞∑
k=0

g(k)q−k, (2.2)

where g = {g(k)}∞k=0 is the (im)pulse response sequence of the system with g(0),
g(1), . . . being known as the impulse response/Markov coefficients. Such a re-
sponse is equal to the response (output) of the system for a unit pulse input at
zero. Accordingly, the IO mapping (2.1) can be written as

y(t) =
∞∑
k=0

g(k)u(t− k) = (g~ u)(t), (2.3)

where (g~u)(t) denotes the convolution between the impulse response g and the
input u at time t. Let G(z) : C→ C, with z ∈ C being the Z−variable and C being
the complex plane. The transfer function of the system F is defined as

G(z) = Z {g(k)} =
∞∑
k=0

g(k)z−k, (2.4)

which is theZ−transform of gwith a corresponding Region Of Convergence1 (ROC).
Such a function, i.e., G(z), for the considered class of FD-LTI systems is a rational
transfer function that can be expressed as a ratio of finite order polynomials of
z. It is called real-rational, if the coefficients of the numerator and denominator
polynomials are real. It is called proper if lim|z|→∞G(z) < ∞ and strictly proper
if in addition lim|z|→∞G(z) = 0, which implies that g(0) = 0. Substitution of z by
ejω , with j =

√
−1 , gives the frequency response of the DT system for ω ∈ [−π, π],

i.e., the FRF denoted by G(ejω).

In case of causal2 DT-FD-LTI system F , i.e., a system represented by a proper
G(z), a state-space representation of F is also available:

x(t+ 1) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.5)

1The region of convergence is the set of points in C for which the summation associated with the
Z−transform converges.

2A causal system is a system where the output depends on the past and current inputs, but not on
future inputs.
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where the 4-tuple (A,B,C,D) are matrices with appropriate dimensions. Eq. (2.5)
is called a state-space realization of the system F . Given the realization (A,B,C,
D) of F , the corresponding transfer function G can be obtained as:

G(z) = D + C(zI −A)−1B, (2.6)

while the corresponding impulse response coefficients satisfy

g(0) = D, g(k) = CAk−1B, ∀k > 0. (2.7)

2.1.2 Stability

In this section, we introduce the notion of stability of DT-FD-LTI systems.

Definition 2.1 (Stability of DT-FD-LTI systems) (Pearson 1999) A causal DT-FD-
LTI system F with minimal state-space realization (A,B,C,D) and transfer function
representation G(z) with an IIR {g(k)}∞k=1 is asymptotically stable if and only if one of
the following equivalent conditions is satisfied:

1. For a minimal state-space realization3 (A,B,C,D), all the eigenvalues of A are
strictly inside the unit circle.

2. All poles of G(z), i.e., the roots of the denominator (or common denominator in the
MIMO) of G(z), are strictly inside the unit circle.

3. The impulse response function denoted by g satisfies:

SISO :
∞∑
k=0
|g(k)| <∞,

MIMO : max
i∈{1,...,nY}

nU∑
j=1

∞∑
k=0
|gi,j(k)| <∞.

(2.8)

Such a stability properly implies that the system is a Bounded-Input Bounded-Output
(BIBO) stable system, i.e., it produces a uniformly bounded output when a uni-
formly bounded input is applied.

2.2 The related Hilbert and Hardy spaces

In this section, we discuss some fundamental notions that are related to functional
analysis, which are useful for the later discussion.

3Note that state-space realization of a TF G(z) is generally non unique and can result in (2.5) with
various state dimensions dim(x). A minimal realization is one of these equivalent realizations with
the least possible state dimension.
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2.2.1 Metric, normed linear and inner product spaces

Definition 2.2 (Metric space) (Young 1988) A metric space (X ,d) is a set X together
with an assigned metric function d : X × X → R, that determines the “distance”
between any two elements in that space, and has the following properties:

1. Positive: d(x1, x2) ≥ 0 for all x1, x2 ∈X ,

2. Nondegenerate: d(x1, x2) = 0 if and only if x1 = x2,

3. Symmetric: d(x1, x2) = d(x2, x1) for all x1, x2 ∈X ,

4. Triangle inequality: d(x1, x3) ≤ d(x1, x2) + d(x2, x3) for all x1, x2, x3 ∈X .

An intuitive example of a metric space is R with the associated metric |x1 − x2|,
for x1, x2 ∈ R. The two interesting special cases of metric spaces: i) normed linear
space; and ii) inner product space, where both of them are linear (vector) spaces.

Definition 2.3 (Linear (vector) space) A linear (vector) space is a collection of objects,
the so-called vectors, which can be added together, and multiplied by constants, i.e., scaled.
The result of these actions, i.e., addition and scaling, is always an element in that space.

Definition 2.4 (Normed linear space) A (complex) normed linear space (HN, ‖ · ‖) is
a linear (vector) space with a function ‖ · ‖ : HN → R called a norm that satisfies the
following properties:

1. Positive: ‖x‖ ≥ 0 for all x ∈HN,

2. Nondegenerate: ‖x‖ = 0 if and only if x = 0,

3. Multiplicative: ‖ςx‖ = |ς|‖x‖ for all x ∈HN and ς ∈ C,

4. Triangle inequality: ‖x1 + x2‖ ≤ ‖x1‖+ ‖x2‖ for all x1, x2 ∈HN.

Moreover, a normed linear space (HN, ‖·‖) is a metric space, where the metric d is defined
by d(x1, x2) = ‖x1 − x2‖ for x1, x2 ∈HN.

Definition 2.5 (Inner product space) An inner product space (HI, 〈·, ·〉) is a linear
(vector) space with a function 〈·, ·〉 : HI ×HI → C called an inner product that satisfies
the following properties:

1. Positive: 〈x, x〉 ≥ 0 for all x ∈HI,

2. Nondegenerate: 〈x, x〉 = 0 if and only if x = 0,

3. Multiplicative: 〈ςx1, x2〉 = ς〈x1, x2〉 for all x1, x2 ∈HI and ς ∈ C,

4. Symmetric: 〈x1, x2〉 = 〈x2, x1〉∗ for all x1, x2 ∈ HI, where z∗ denotes the com-
plex conjugate of the complex number z.
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5. Distributive: 〈x1 + x2, x3〉 = 〈x1, x3〉+ 〈x2, x3〉 for all x1, x2, x3 ∈HI.

Moreover, an inner product space (HI, 〈·, ·〉) is a normed linear space with the norm
defined by ‖x‖ =

√
〈x, x〉 .

It is worth to emphasize that

inner product space ⇒ normed linear space ⇒ metric space.

However, the converse implications are not true. Next, we give the definition of
Cauchy sequences and the notion of complete metric space.

Definition 2.6 (Cauchy sequence) Let {xk}∞k=1 be a sequence in a metric space (X ,d).
The sequence {xk}∞k=1 is said to be Cauchy if for every ς > 0 there exists an integer
kς ∈ N, where N is the set of natural numbers (positive integers), such that d(xi, xj) < ς
whenever i, j > kς .

Definition 2.7 (Complete metric space) If every Cauchy sequence in a metric space
X converges to an element of X , then X is said to be complete.

Definition 2.8 (Banach space) A Banach space is a complete normed linear space.

Definition 2.9 (Hilbert space) A Hilbert space is a complete inner product space.

Definition 2.10 (Orthonormal basis of a Hilbert space) A sequence {φk}∞k=1 in a
Hilbert space H , equipped with an inner product denoted by 〈·, ·〉H , is said to be a com-
plete orthonormal basis if the following conditions are satisfied:

• 〈φi, φl〉H =
{

0, for i 6= l

1, for all i = l ≥ 1.

• For any f ∈ H , f(·) =
∑∞
k=1 ckφk(·), where ck = 〈f, φk〉H are the expansion

coefficients of f under the basis {φk}∞k=1.

In the following, we introduce some related Hilbert spaces that are important for
the development of the subsequent results.

2.2.2 Sequence-related Hilbert spaces

Denote by `2(Z), the Hilbert space of squared summable complex scalar sequences
h : Z → C, i.e., “finite energy sequences” that satisfy

∑∞
k=−∞ |h(k)|2 < ∞,

equipped with the inner product between any two elements f, h ∈ `2(Z) as

〈f, h〉`2 =
∞∑

k=−∞
f(k)h∗(k).
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As causal sequences4 are of special interest, an interesting subspace of `2(Z) is
`2(N), which is the space of causal sequences h : N → C of finite energy, i.e.,∑∞
k=1 |h(k)|2 < ∞. Another interesting subspace of `2(N) is R`2(N), which con-

tains only squared summable, real and causal sequences. Moreover,R`1(N), which
is a Banach space, is the subspace of absolutely summable real sequences, i.e.,∑∞
k=1 |h(k)| <∞, equipped with the norm:

‖h‖`1 =
∞∑
k=1
|h(k)|.

The importance of the space R`1(N) comes from the fact that the impulse re-
sponse g of all DT-FD-LTI stable and causal systems satisfies the necessary and
sufficient condition

∑∞
k=1 |g(k)| < ∞ in the SISO case, see Definition 2.1, hence

it belongs to R`1(N), which implies that it belongs to R`2(N) since R`1(N) ⊂
R`2(N). However, the converse is not true, i.e., a square summable sequence does
not need to be absolutely summable asR`2(N) 6⊂ R`1(N).

Example 2.1 (The connection betweenR`1(N),R`2(N)) Consider the following harmonic series h(k) =
1
k
, k ∈ N. Since

∑∞
k=1 |h(k)|2 = π2

6 < ∞, hence, h ∈ R`2(N). However,
∑∞

k=1 |h(k)| = ∞, which
means that h /∈ R`1(N).

2.2.3 Function-related Hilbert spaces

We denote by L2(J), where J is the unit circle, the Hilbert space of square inte-
grable scalar complex functions on J, i.e., 1

2π
∫ π
−π |F (ejω)|2dω <∞, equipped with

the inner product

〈F1, F2〉L2 = 1
2π

∫ π

−π
F1(ejω)F ∗2 (ejω)dω, (2.9)

where F1, F2 ∈ L2(J). A very important subspace of L2(J) is the Hardy space
H2 (E) defined below, with E being the exterior of the unit circle.

Definition 2.11 (The Hardy space over E) (Heuberger et al. 2005) Denote by H2 (E)
the Hardy space of complex functions F : C → C, which are analytic5 on E and squared
integrable on J. H2 (E) is equipped with an inner product that is defined as

〈F1, F2〉H2 = 1
2πj

∮
J
F1(z)F ∗2 (1/z∗)dz

z
, (2.10)

where F1, F2 ∈H2 (E).

4A sequence h is causal if h(k) = 0 for k < 0.
5A complex function is said to be analytic on a regionR if it is complex differentiable at every point

in R. Moreover, if a complex function is analytic on a region R, it is infinitely differentiable in R.
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Moreover, RH 2 (E) is a subspace of H2 (E) which contains all functions that
have a real-valued impulse responses. Another interesting subspace is RH 2− (E)
which is a subspace of RH 2 (E) which contains all real, proper, rational and
finite-order transfer functions which are analytic on E and square integrable on
J, i.e., these transfer functions are stable in the sense that their impulse responses
belong toR`1(N).

2.2.4 Isomorphism between the considered spaces

For Hilbert spaces, an isomorphism is a one to one mapping that preserves inner
products and hence norms. It is enough to define a one to one mapping that
carries each element of a complete orthonormal basis of the first Hilbert space to
a unique element of a complete orthonormal basis of the second Hilbert space.

The spaces `2(Z), `2(N) are isomorphic to L2(J),H2 (E), respectively, i.e., every
f ∈ `2(N) corresponds to one and only one function F ∈ H2 (E) and vice versa.
Such an isomorphism is defined through the following z-transform:

F (z) = Z {f} =
∞∑
k=1

f(k)z−k, (2.11)

which holds for all z ∈ C in the corresponding ROC. Equivalently, this isomor-
phism can be established via the following Discrete-Time Fourier Transform (DTFT)
denoted by F , where the Fourier transform of a sequence f ∈ `2(N) can be seen
as the z-transform of that sequence evaluated on J ⊂ ROC, due to the norm defi-
nition (2.10), i.e.,

F (ejω) = F{f} =
∞∑
k=1

f(k)e−jωk, (2.12)

where F ∈H2 (E).

Similarly, an isomorphism is presented between the subspaces RH 2 (E) and
R`2(N) and is defined through the same mapping as detailed in (2.11) and (2.12).
It is worth to mention that the inverse z−transform, denoted by Z −1, of any F ∈
H2 (E) is defined as

f(k) = Z −1{F (z)} = 1
2πj

∮
J
F (z)zk−1 dz, (2.13)

with k ∈ N and the inverse DTFT, denoted by F−1, of any F ∈ H2 (E) is defined
as

f(k) = F−1{F (ejω)} = 1
2π

∫ π

−π
F (ejω)ejωkdω, (2.14)

where f ∈ `2(N). Figure 2.2 shows the above-mentioned connection between dif-
ferent spaces from different domains. At the right side of the figure, the sequences
related spaces are shown, whereas the functions-related spaces are shown at the
left side. The mapping between both domains is established by the z-transform,
Fourier transform and their inverses.
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Figure 2.2: The isomorphisms between some related Hilbert and Hardy spaces.

Example 2.2 (Standard or canonical complete orthonormal basis)

• R`2(N) : φi(k) = δik, i ∈ N, where δik is the Kronecker delta function, i.e., it is equal to one if i = j
and equal to zero otherwise.

• RH 2 (E): φi(z) = z−i, i ∈ N.

2.2.5 Why Hilbert spaces are interesting?

Let {φk}∞k=1 be an orthonormal basis of a Hilbert space H with 〈·, ·〉H as the inner
product defined on it, Un = Span {φk}nk=1, and U⊥n is its orthogonal complement6,
i.e., U⊥n = Span {φk}∞k=n+1. According to the projection theorem (Young 1988), the
direct sum of Un and U⊥n is H itself. Hence, each element x ∈ H can be written
as

x =
n∑
i=1
〈x, φi〉H φi︸ ︷︷ ︸
∈Un

+
∞∑

i=n+1
〈x, φi〉H φi︸ ︷︷ ︸
∈U⊥n

. (2.15)

Note that the best approximation of x ∈ H on Un is the projection of x onto Un,
where the error of the approximation belongs to U⊥n .

Remark 2.1 It is noticeable that the approximation error depends on the number of terms
n in the truncated expansion and the basis functions. With proper selection of the ba-
sis, i.e., {φk}∞k=1, we can tune how fast the coefficients converge to zero and accordingly
further influence the error term which is described by the orthogonal complement.

6U⊥n is composed by all elements of H that are simultaneously orthogonal to all elements of Un.
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As mentioned in Section 2.1.1, a series expansion representation, in terms of basis
functions, of FD-LTI systems is a well-known representation. Regarding IIR mod-
els, any G ∈ RH 2− (E) can be written as a linear combination of the orthonormal
basis of RH 2− (E), in particular the pulse basis φi(z) = z−i, as shown in (2.4).
An approximation can be obtained by truncating the IIR representation (2.4) to
the n−th order expansion, which is known as the Finite Impulse Response (FIR)
representation:

Ĝ(z) =
n∑
k=1

g(k)z−k. (2.16)

The quality of this approximation depends on the relative magnitude of the im-
pulse response coefficients that are not included in the finite expansion. For in-
stance, in case of systems that exhibit slow dynamics, i.e., slow decaying impulse
response, a high order FIR representation, associated with a large number of co-
efficients, is required to get a good approximation. However, from the utilization
perspective, estimating such a large number of parameters is, in general, unattrac-
tive as the variance of the parameter estimates grows with the number of esti-
mated parameters. A possible solution to cope with this problem is to utilize an
efficient basis of RH 2− (E) instead of the pulse basis used in the FIR represen-
tation, i.e., basis that result in a faster decay of the expansion and hence reduce
the required number of parameters to be estimated. Next, we introduce how such
basis can be generated and discuss their attractive properties in system approxi-
mation.

2.3 Orthonormal basis functions

2.3.1 All-pass functions

A special set of functions in H2 (E), the so-called all-pass functions or inner func-
tions, are of great importance in many areas of system and control theory, e.g.,
(Vidyasagar 1985), signal processing, e.g., (Regalia et al. 1988), network synthesis,
e.g., (Deprettere and Dewilde 1980), etc.

Definition 2.12 (All-pass function) A function H ∈H2 (E) is called all-pass, if

H (z)H ∗(1/z∗) = 1, ∀z ∈ C. (2.17)

Such a function if rational, is completely determined, modulo the sign, by its poles
{λi ∈ D}ni=1 with D is the unit disc, and it can be written as:

H (z) = ±
n∏
i=1

1− λ∗i z
z − λi

, (2.18)

which is known as a Blaschke product (Vidyasagar 1985). In the context of the work
presented in this thesis, all-pass functions are the main building blocks in the con-
struction of general rational orthonormal basis as will be shown in the next sec-
tion.



40 Chapter 2 LTI Systems and OBFs

2.3.2 General class of OBFs

Since the goal is to define an efficient basis to be used to represent DT-FD-LTI sys-
tems, in the following, we shall introduce rational OBFs which constitutes a com-
plete basis for H2 (E) and some of its subspaces, e.g., RH 2 (E) and RH 2− (E).
Moreover, the definition of such basis will also be discussed in the time-domain
with the related sequence spaces.

Takenaka-Malmquist basis

Let H0 ≡ 1 and {Hi}∞i=1 be a sequence of DT stable inner functions with McMillan
degrees7 {ni}∞i=1 and let (Ai, Bi, Ci, Di) be minimal balanced state-space represen-
tations of Hi (Skogestad and Postlethwaite 1996). Let {λ1, λ2, . . . } ⊂ D, denote the
collection of all poles of the inner functions H1,H2, . . . satisfying the completeness
(Szász) condition8 ∑∞

k=1(1− |λk|) =∞. Then, the scalar elements of the sequence
of vector functions

Vi(z) = (zI −Ai)−1Bi

i−1∏
l=0

Hl(z), i > 0, (2.19)

constitute a complete orthonormal basis for H2 (E), where each element [Vi]j is
orthonormal in H2 (E) with respect to the entire sequence. These scalar elements
can be written as

{ψ̆k(z)}∞k=1 = {[Vi]j}∞,nii=1,j=1 =
√

1− |λk|2
z − λk

k−1∏
l=1

1− λ∗l z
z − λl

, k =
(
i−1∑
l=0

nl

)
+j, (2.20)

where [Vi]j denote the j-th element of Vi, which are known as Takenaka-Malmquist
functions (Heuberger et al. 2005). Note that, in the general case, in the sense that
there are no further restrictions on the poles, such basis have complex-valued im-
pulse responses. In order to guarantee that the associated impulse responses with
the considered basis are real-valued, i.e., that the basis belong to RH 2 (E), the
complex poles should appear in complex conjugate pairs.

There are some interesting special cases of the class of OBFs generated by (2.20)
that can be visualized in Figure 2.3. These special cases will be briefly discussed
below (see Heuberger et al. (2005) for a detailed overview on these classes).

Hambo basis

The special case when all Hi = Hb, ∀i > 0, where Hb ∈ RH 2− (E) is an inner
function with McMillan degree ng > 0, are known as the Hambo basis, also known

7The McMillan degree of a transfer function G(z) is defined as the state dimension of the minimal
realization of G(z).

8This condition means that the sequence of the generating poles cannot converge too fast to the unit
circle.
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Takenaka-Malmquist basis

Hambo basis

Kautz basis

Laguerre basis

Pulse 
basis

Figure 2.3: Classification of orthonormal basis functions (Tóth 2008).

as Generalized OBFs (GOBFs). Let (Ab, Bb, Cb, Db) be a minimal balanced state-
space realization of Hb(z). Such a function is completely determined by its poles
Λng =

{
λ1, . . . , λng

}
∈ D with Λng containing real poles and/or complex conju-

gate pole pairs. The class of Hambo basis is obtained by cascading identical ng-th
order all-pass functions and can be written in a vector form as:

Vi(z) = V1(z)H i−1
b (z), for i > 1, (2.21)

where V1(z) = (zI−Ab)−1Bb and I is the identity matrix with an appropriate size.
Let [V1]j denote the j-th element of V1. Then, the GOBFs consists of the functions

Ψ̆ng
=
{
ψ̆k

}∞
k=1

=
{

[V1]jH i
b
}ng,∞
j=1,i=0 , with k = i · ng + j. (2.22)

These functions, i.e., (2.22), constitute a complete orthonormal basis for RH 2 (E).

Kautz basis

When Hi = Hb, ∀i > 0 with ng = 2, the resulting OBFs are called 2-parameter
Kautz functions. Such functions can be considered to be adequate (in terms of the
truncation concept of Section 2.2.5) for the expansion of transfer functions with
dominant second order modes:

ψ̆2k−1(z) =
√

1− c2 (z − b)
z2 + b(c− 1)z − c

(
−cz2 + b(c− 1)z + 1
z2 + b(c− 1)z − c

)k−1

ψ̆2k(z) =
√

(1− c2)(1− b2)
z2 + b(c− 1)z − c

(
−cz2 + b(c− 1)z + 1
z2 + b(c− 1)z − c

)k−1

,

(2.23)

where b, c ∈ (−1, 1). Note that (2.23) corresponds to a repeated complex pair
λ, λ∗ ∈ D.

Laguerre basis

In case Hi = Hb, ∀i > 0 with ng = 1 the basis are called Laguerre functions. As this
type of functions in RH 2 (E) have only a real repeated pole λ, therefore it can
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Figure 2.4: Laguerre basis functions, ψ̆1, ψ̆5, ψ̆10, ψ̆20, λ = 0.5 .

provide an adequate basis for a F ∈ RH 2 (E) with a dominant first-order mode.

ψ̆k(z) =
√

1− λ2

z − λ

(
1− λz
z − λ

)k−1
, λ ∈ (−1, 1), (2.24)

where the parameter λ is known as the Laguerre parameter or generating pole.
The impulse response of Laguerre basis functions exhibits an exponential decay
as shown in Figure 2.4 for λ = 0.5.

Pulse basis

In the case when Hi = z−1, ∀i > 0, the corresponding basis are called pulse func-
tions. Such functions are utilized in the “well-known” impulse response represen-
tation of LTI systems, see Section 2.1.1.

2.3.3 OBFs model structure

Since Ψ̆ng
in (2.22) constitutes a complete basis of RH 2 (E), any G ∈ RH 2 (E)

can be decomposed as9

G(z) =
∞∑
i=0

ng∑
j=1

c̆ij [V1]jH i
b(z)

=
∞∑
k=1

ckψ̆k(z),
(2.25)

9There are various forms of series-expansion defined in the MIMO case. Here we take the simplest
form of expansion in terms of scalar basis, see Heuberger et al. (2005) for more details.
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Figure 2.5: IO relation when the OBFs parameterization (2.25) is used with C̆i =
[c̆i1 · · · c̆ing ].

which is the generalization of expansion in terms of the well-known pulse basis
functions, i.e.,

{
z−k

}∞
k=1, used in the impulse response model structure (2.4). It

can be shown that the rate of convergence of this series expansion is bounded by
ρb = maxk |Hb(λ̆−1

k )|, the so-called decay rate, where {λ̆k} are the poles of G(z)
(Oliveira e Silva 1996). In the best case, i.e., when the poles ofG are the same (with
multiplicity) as the poles of Hb, only the terms with i = 0 in (2.25) are non-zero.
When such a model representation, i.e., (2.25), is used to describe the dynamics of
an LTI system, the IO relation is illustrated in Figure 2.5, where the signals {xi} are
the state variables of the balanced state-space realization of Hb. More specifically,
xi = (zI − Ab)−1BbH i−1

b (z)u. In practice, only a finite number of extensions of
Hb, i.e., ne, is used

Ψ̆ne
ng

=
{
ψ̆k

}ngne

k=1
=
{

[V1]jH i
b
}ng,ne

j=1,i=0 , with k = i · ng + j, (2.26)

like in FIR models, where
{
z−k

}n
k=1 are used as basis functions. It can be shown

that there exists a ς > 0 such that all expansion coefficients c̆ij ∈ R satisfy10:

|c̆ij | ≤ ςρ
ng(i+1)+j
b . (2.27)

In contrast with FIR structures, the OBFs parameterization uses a broad class of
basis functions with Infinite Impulse Representation. Therefore, OBFs parameteriza-
tion can achieve an arbitrary low modeling error with a relatively small number
of parameters due to the faster convergence of the series representation than in
the FIR case, which in system identification results in decreased variance of the
final model estimate (Heuberger et al. 1995; Tóth et al. 2009a).

Since we are interested also in impulse response estimation based on time-
domain data, it is more convenient to define the corresponding OBFs in the time-
domain. Denote by

Ψ = {ψk}∞k=1, (2.28)

10Note that, such an upper bound is only true in the SISO case. However, in the MIMO case, it is
still valid for each output channel.
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ψk(t) = Z −1{ψ̆k(z)}, i.e., the correspondent of {ψ̆k}∞k=1 in the time-domain. It
is an important result that {ψk}∞k=1 is a complete basis of R`2(N) (Oliveira e Silva
1995), hence any impulse response g ∈ R`2(N) associated with aG(z) ∈ RH 2 (E)
can be written as

g(t) =
∞∑
k=1

ckψk(t). (2.29)

Note also that the expansion coefficients ck are the same as in (2.25) and decay to
zero according to (2.27).

Next, we derive a bound for the Takenaka-Malmquist basis (Heuberger et al.
2005), which will be useful later11.

Proposition 2.1 (Magnitude bound of OBFs) Consider the Takenaka Malmquist ba-
sis which is defined as in (2.20) with pole locations {λi}∞i=1 ⊂ D, which are assumed to
appear as real or complex conjugate pairs, being the generating poles locations of {ψ̆k}∞k=1
and {ψk}∞k=1 are their associated impulse responses. It holds that

‖ψk‖`1 ≤ 2kκ, (2.30)

where κ is a constant that depends on the generating poles.

Proof: See Appendix A.1. �

2.4 Modeling and identification of LTI systems

System identification is about building mathematical models for dynamic systems
based on experimentally measured IO data record. The identification cycle sum-
marized in Table 1.1 gives an overview of the underlying procedure. Two crucial
steps involved in that cycle are the choices of an appropriate model set and the
identification criterion. The former describes the set in which the suitable descrip-
tion of the system is sought, while the latter defines the aimed performance of
the model. The importance of the model set comes from the fact that it directly
influences the maximum achievable accuracy or quality of the identified model in
terms of the user-defined criterion. The model set should be as large as possible in
order to contain as many candidate models as possible, which reduces the struc-
tural/bias error of the optimal model in the set. At the same time, the number of
parameters of the model should be kept as small as possible, because the variabil-
ity of the identified models increases with increasing number of parameters. Such
conflicting objectives correspond to the well-known bias/variance trade-off.

In this section, a brief introduction of DT prediction error identification is given,
based on Ljung (1999) and Heuberger et al. (2005). Note that the remaining part
of this section is largely based on Tóth (2010).

11Note that the derived bound holds true for all of the subclasses of the Takenaka-Malmquist basis,
see Figure 2.3.
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2.4.1 Identification setting

In the following, the black-box setting of Ljung (1999) is adopted as a framework.
In this setting, we are aiming at identifying an unknown system without the use
of a prior structural information, but under the assumption that the underlying,
so called data-generating system, is an LTI discrete-time SISO system:

y = G0(q)u+ v, (2.31)

where G0 ∈ RH 2− (E), u is a quasi-stationary signal, and v is a stationary stochas-
tic process (see Ljung (1999) for a definition of these properties). Furthermore v
satisfies

v = H0(q)e, (2.32)

withH0 is a monic12, rational transfer function13 such thatH0, H
−1
0 ∈ RH 2− (E)14

and e is a zero-mean white noise process with variance σ2
e . Figure 2.6 shows the

block diagram of the data generating system under such a setting. Assume fur-
thermore that a data sequence DN = {u(t), y(t)}Nt=1, generated by (2.31), is avail-
able. Under the given assumptions, the so called one-step ahead prediction of y(t)
based on {y(t− 1), y(t− 2), . . .} and {u(t), u(t− 1), . . .} is

ŷ := (1−H−1
0 (q))y +H−1

0 (q)G0(q)u, (2.33)

where due to the monic nature of H0, only information on {y(t− 1), y(t− 2), . . .}
and {u(t), u(t − 1), . . .} are needed to compute ŷ(t). In prediction error identi-
fication, a parameterized model (G(q, θ), H(q, θ)) is hypothesized, where θ ⊂ Θ
represents the parameter vector that contains the real-valued coefficients of the
model, and Θ ∈ Rnθ is the allowed parameter space. This model structure leads
to the one-step ahead predictor:

ŷθ := (1−H−1(q, θ))y +H−1(q, θ)G(q, θ)u. (2.34)

Then, in the prediction error setting, we would like to choose θ such that the
resulting ŷθ is a good approximation of y, i.e. the so called prediction error

ε(t, θ) := y(t)− ŷθ(t), (2.35)

is minimized. This is commonly performed by the minimization of the scalar-
valued prediction error or the so-called “least squares” LS identification criterion

WN (θ,DN ) = 1
N

N∑
t=1

ε2(t, θ), (2.36)

12Monicity implies that limz→∞H0(z) = 1.
13In the LTI case and due to the linearity of G0, it is possible to lump many different sources of

disturbances into v, e.g. process noise, uncontrollable inputs, etc., which suggests to assume the power
spectrum of the noise process to be a rational function, i.e., v is a filtered zero-mean white noise process.

14Note that due to the definition of H0 to be monic it does not belong to RH 2− (E) as a direct
feedthrough is required to augment RH 2− (E) resulting in RĤ2− (E) = {ς+H}, where ς ∈ R, H ∈
RH 2− (E). However, since it is not relevant to distinguish these two sets most of the time, we will
use the same notation, i.e., RH 2− (E), for both of them.
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Figure 2.6: Data generating system in the LTI prediction error framework.

Table 2.1: Black-box model structures

ARX ARMAX OE FIR BJ

G(q, θ) RB(q−1,θ)
RA(q−1,θ)

RB(q−1,θ)
RA(q−1,θ)

RB(q−1,θ)
RF(q−1,θ) RB(q−1, θ) RB(q−1,θ)

RF(q−1,θ)

H(q, θ) 1
RA(q−1,θ)

RC(q−1,θ)
RA(q−1,θ) 1 1 RC(q−1,θ)

RD(q−1,θ)

resulting in
θ̂N = arg min

θ∈Θ
WN (θ,DN ) , (2.37)

based on the available data record DN . For other options regarding the identi-
fication criterion, see Ljung (1999). Optimization of the identification criterion
according to (2.37) is generally a non-convex optimization problem for which it-
erative (e.g., gradient-based) algorithms have to be applied. This also implies that
convergence to a global optimum can not be easily guaranteed. However, in spe-
cific cases of parametrization, the optimization reduces to a convex problem with
an analytical solution, as will be shown later.

2.4.2 Model structures

One advantage offered by the prediction error framework is the various black-box
model structures available for the parametrization of G(q, θ) and H(q, θ) (see Ta-
ble 2.1 for these model structures, where the two transfer operators G(q, θ) and
H(q, θ) are parameterized in terms of ratio of polynomialsRA, . . . , RF in the back-
ward time-shift operator q−1). The parameter vector θ of these model structures
contains the collection of the coefficients of the polynomials. Commonly, the de-
nominator polynomials are assumed to be monic to ensure uniqueness of the
parametrization. Every model structure or parametrization induces a set of pre-
dictor models, commonly called the model set:

{(G,H) ∈ RH 2− (E)×RH 2− (E) | θ ∈ Θ ⊂ Rnθ} . (2.38)
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This concept allows us to distinguish the following situations:

• The data generating system (G0(q), H0(q)) is in the model set, i.e., an exact
representation of the data generating system can be found by the chosen
model structure.

• (G0(q), H0(q)) is not in the model set, and hence no exact representation of
the system exists by the model structure.

When the main focus is given to the process dynamics of the system, i.e., the
deterministic part of the data generating system G0, it is more convenient to deal
with the set of IO models:

{G ∈ RH 2− (E) | θ ∈ Θ ⊂ Rnθ} . (2.39)

This leads to situations where the process dynamics G0 can be or can not be cap-
tured within the chosen model set. Different model structures offer different prop-
erties, namely linear-in-the-parameter and independent parameterization of the pro-
cess and noise dynamics:

• For ARX and FIR model structures, the expression of the output predic-
tor (2.34) is linear in the unknown parameters θ, i.e. both the terms (1 −
H−1(q, θ)) andH−1(q, θ)G(q, θ) are polynomials, which has the major bene-
fit that the LS criterion can be minimized by solving a set of linear equations.

• For FIR, OE, and BJ model structures, G and H are independently param-
eterized, hence they can be estimated independently in the sense that, we
might be able to consistently estimate G even if H is misspecified.

It is particularly attractive to consider a FIR model structure as it satisfies both
properties, i.e., linear-in-the-parameter and independent parameterization of the
process and noise dynamics.

2.4.3 Identification with OBFs

As explained in the previous section, the FIR model structure enjoys two attrac-
tive properties: linear-in-the-parameter property and independent parameteriza-
tion of the process and noise models. However, such a model structure, i.e., FIR,
has a major drawback. More specifically, its capability to efficiently capture the
dynamics of physical systems is limited as it generally requires a large number of
parameters especially for slow systems, i.e., where the impulse response becomes
“long”, which leads to increased variance of the estimated model.

In order to retain the above-mentioned attractive properties and at the same
time increase the representation capability of such models, OBFs can be used in-
stead of the pulse basis (2.4), which can effectively reduce the required number of
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parameters and accordingly reduce the variance of the estimated model. Next, we
consider the following model structure:

G(q, θ) =
n∑
i=1

ciψ̆i(q), H(q, θ) = 1, (2.40)

where {ψ̆i}ni=1 are orthonormal basis functions in RH 2− (E) with pole locations
Λn. The unknown series-expansion coefficients of (2.40) are collected into the pa-
rameter vector θ = [c1 · · · cn]> ⊂ Rn.

2.4.4 Linear regression

The linear-in-the-parameter property holds for ARX, FIR and OBFs model struc-
tures. Hence, the LS problem (2.37) becomes a convex optimization problem with
the analytic solution:

θ̂N =
[

1
N

Υ>NΥN

]−1 [ 1
N

Υ>NYN
]
. (2.41)

where YN = [y (1) · · · y (N)]> is the collection of the measured output samples
and ΥN = [γr (1) · · · γr (N)]> contains the regressor vector γr that describes the
data relation according to the one-step-ahead predictor: ŷθ(k) = γ>r (k)θ. For the
ARX case with deg(RA) = na and deg(RB) = nb, the regressor vector is

γ>r (k) = [y(k − 1) · · · y(k − na) u(k − 1) · · · u(k − nb)] ,

while in the FIR case with deg(RB) = nb, the regressor vector becomes

γ>r (k) = [u(k − 1) · · · u(k − nb)] ,

and finally for the OBFs case, the regression vector becomes

γ>r (k) =
[

(ψ̆1(q)u)(k) · · · (ψ̆n(q)u)(k)
]
,

containing filtered versions of the input signal rather than delayed versions of u
or y.

From the point of view of numerical implementation, the matrix inversion re-
quired for the solution (2.41) is not computed directly, but via a QR-algorithm.

Remark 2.2 For other model structures that do not have the linear-in-the-parameter
property, e.g., OE and ARMAX model structures, the LS problem (2.37) does not lead
to a convex optimization problem with analytic solution and a NL optimization, prone to
local minima, is needed to obtain the model estimate.
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2.4.5 Validation in the prediction error setting

The final step in the identification cycle is the (in)validation of the estimated model
as shown in Table 1.1. It is mainly about deciding if we accept the estimated model
or not for the intended application. In the considered setting, i.e., prediction er-
ror, commonly a measured data record, known as the validation data set, is used
with the estimated model to compute a simulated / predicted response and then
compare it with the measurements. Various approaches are available to accom-
plish such a step including correlation analysis of the residual or employing an
error measure that quantifies the difference between the measured y and the sim-
ulated/predicted output ŷ. Some popular measures are the following:

Definition 2.13 (Mean squared error) (Ljung 1999) The Mean Squared Error (MSE)
is the expected value of the squared estimation error :

MSE := E{(y − ŷ)2}, (2.42)

where E is the expectation operator. The MSE is often computed in a sampled
form:

∧

MSE := 1
N

N∑
k=1

(
y(k)− ŷ(k)

)2
. (2.43)

It is worth to mention that the MSE is equal to the LS criterion (2.36) evaluated for
the predicted ŷ. Hence, a high value indicates invalidity of the model.

Definition 2.14 (Best fit percentage) (Ljung 2006) The Best Fit Rate (BFR) percent-
age is defined as

BFR := 100% ·max
(

1−
‖y − ŷ‖2
‖y − ȳ‖2

, 0
)
, (2.44)

where ȳ is the mean of y.

The BFR percentage is a relative measure, often used in the identification toolbox
of Matlab to indicate the validity of the identified model.

Definition 2.15 (Variance accounted for) The Variance Accounted For (VAF) percent-
age is the percentage of the output variation that is explained by the model:

VAF := 100% ·max
(

1− var {y − ŷ}
var {y} , 0

)
. (2.45)

The VAF measure describes how much of the output variation is explained by the
model, disregarding possible bias of the estimates.
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2.5 Summary

In this chapter, we have introduced some representation forms of LTI systems and
the related notion of stability. This notion is essential to the derivations in Chapter
4. Furthermore, we have discussed some interesting Hilbert spaces that are related
to LTI systems, in terms of both impulse response and transfer function represen-
tations. The importance of the Hilbert space, in general, is also highlighted. In the
second part of this chapter, we have discussed the OBFs, how to generate them
and how to use them to efficiently represent dynamic models. This provides the
necessary background and notations for our investigations in Chapter 4 for the
use of OBFs to construct a rich class of kernels for LTI system identification. Fi-
nally, the classical parametric identification approach in the PEM setting for LTI
systems has been also briefly introduced. Such a discussion is important for two
reasons: the first is that the PEM framework will be mainly used in the subsequent
chapters for estimating linear models; the second is to characterize the associated
challenges with the existing parametric approaches.
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Kernel Methods in Machine Learning

This chapter is devoted to an overview of kernel-based methods in
machine learning. These methods are the backbone of the ap-

proaches developed in the subsequent chapters. We start by defining
the general regression problem in Section 3.1, explaining the classical ap-
proaches for regression and the associated model order selection issue
and how it can be solved with the kernel based methods. In Section 3.2,
we introduce the concept of regularization in RKHSs to give a unified
interpretation of various kernel-based methods. This is followed by an
overview on GPR in Section 3.3, where the considered regularization ap-
proach is investigated from a Bayesian perspective. Section 3.4 provides
a brief discussion on the numerical implementation and computational
complexity associated with the GPR approach. In Section 3.5, the connec-
tion between RKHSs and GPR in case of white measurement noise with
Gaussian distribution is given.

3.1 Regression problem

Regression is the problem of estimating (learning) an unknown function g in a func-
tional relationship y = g(x)+v from a set of observations, i.e., IO measurements of
x and y. Here v represents a noise process, which is often considered to be white
noise in many applications of regression based estimation. Such a problem arises
frequently in many fields, e.g., reinforcement learning, control theory, statistics,
etc. It also serves as the basic estimation concept in black-box estimation.

3.1.1 Generating Model

In the standard regression problem, we assume that a set of observations, i.e.,
DN = {YN , XN}, YN = [y1 · · · yN ]>, XN = [x1 · · · xN ]>, is available, generated

51
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by the original relation/data-generating system as follows1

yi = g(xi) + εi, (3.1)

where xi ∈ R is the input sequence, yi ∈ R is the output, g : R → R is an un-
known (non)linear function and εi ∼ N

(
0, σ2

ε

)
is an independent Gaussian addi-

tive noise with σ2
ε being the noise variance. Our goal is to reconstruct the function

g that describes the observed data and to provide a good prediction of the function
value at a new input location x, i.e., for an arbitrary new pair (x, y), the predicted
value g(x) should be close to y in the MSE sense. In the next section, the classical
parametric approach for this estimation problem is given and problems associ-
ated with such an approach and regularization techniques that cope with them
are explained.

3.1.2 Parametric approach

The classical approach to reconstruct the function g from the available noisy mea-
surements is to use a parametric model gθ : R → R that depends on a vector of
parameters θ ∈ Rnθ , e.g., a finite dimensional polynomial model gθ(x) = θ1 +
θ2x + θ3x

2. Next, the well-known classical LS method, that dates back to Gauss,
can be used to obtain an estimate of θ by minimizing the following quadratic cost
(loss) functional:

θ̂ = argmin
θ

N∑
i=1

(yi − gθ(xi))2. (3.2)

An analytic solution of (3.2) is available and a global minimum w.r.t. θ is guaran-
teed when a linear-in-the-parameter model is postulated, i.e.,

gθ(x) =
nθ∑
i=1

θiφi(x), (3.3)

where {φi}nθi=1 are predefined basis functions. However, with such parameteriza-
tion, a fixed structure is imposed upon the function g. Moreover, the number of
parameters becomes fixed and is determined in advance regardless of the num-
ber of data points N . This immediately introduces the challenge of choosing the
appropriate model complexity determined, e.g., by nθ. Typically, such a selec-
tion is performed by model validation techniques as CV, AIC, BIC, etc., see Ljung
(1999), Söderström and Stoica (1989) for more details. The complexity of the pos-
tulated model largely affects the final model estimates. Its choice is related to the
well-known bias/variance trade-off: i) Low nθ leads to under-modeling and accord-
ingly biased estimate; ii) Increasing nθ will lead to over-parameterized models,
which leads to estimates with high variance possibly due to data interpolation
(the model fits the noise). As a result, the obtained model will perform poorly
when used to predict at a new unseen input. This issue can be also explained in

1For the sake of simplicity, in the sequel, we will restrict the scope to the LTI case.
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the light of ill-posedness in the sense of (Hadamard 1923): the solution of (3.2) can
become highly sensitive to small perturbations of the data yi.

The basic idea now is to use flexible models, i.e., high order models, possibly
also infinite-dimensional, and in the same time to have a “well-posed” solution,
in the sense of (Hadamard 1923). A problem is considered to be well-posed if
the solution: i) exists; ii) unique; and ii) depends continuously on data and pa-
rameters. Such a solution can be found via nonparametric2 regression, which is
mainly about determining the required complexity of the model from data and
using high-level assumptions, e.g., smoothness, which are more relaxed than im-
posing a specific structure on the model. The modern nonparametric approaches
to accomplish such a task mainly use regularization techniques introduced exten-
sively in the inverse problem literature (Tikhonov and Arsenin 1977; Bertero 1989)
in conjunction with RKHSs (Aronszajn 1950; Schölkopf and Smola 2002). In the
remaining of this chapter, two regularization techniques, namely regularization
in RKHSs and Gaussian regression, are overviewed as they are essential for the
developed theory in the subsequent chapters.

3.2 Regularization in RKHSs

RKHSs provide an attractive framework to treat in a unified way many regular-
ization methods, namely, kernel-based methods including smoothing splines (Wahba
1990), Regularization Networks (RN) (Poggio and Girosi 1990), SVM (Suykens et al.
2002; Vapnik 1998) and GPR (Rasmussen and Williams 2006). It has been success-
fully applied in statistics (Wahba 1990), approximation theory (Poggio and Girosi
1990), computer vision (Bertero et al. 1988) and introduced to the machine learning
community in Girosi (1998).

3.2.1 The concept of the regularization network

Regularization in RKHSs is one of the most popular approaches for nonparametric
regression, where the unknown function can be obtained by minimizing a regu-
larized functional over a Hilbert space H . For instance, a RN (Poggio and Girosi
1990) is

ĝ = argmin
g∈H

N∑
i=1

(yi − g(xi))2

︸ ︷︷ ︸
“data-fit”

+ γ ‖g‖2H︸ ︷︷ ︸
“regularizer”

. (3.4)

One can see that the objective function consists of two contradicting terms: i) The
quadratic loss term that measures the adherence to the observed data; ii) The reg-
ularizer in terms of the squared norm of the Hilbert space H (hypothesis space),
that guarantees the well-posedness of (3.4) by penalizing undesired behavior and
restricts/governs complexity of g. Finally, γ is the regularization parameter that

2Nonparametric does not mean that there are no parameters in the model, but it implies that the
number of parameters is flexible and grows with the number of data points.
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controls the trade-off between the two contradictory terms, i.e., for small values
of γ the “data-fit” term becomes dominant and the probability to overfit the data
becomes high, whereas for large values of γ the “regularizer” term becomes dom-
inant and a simple model is expected to be obtained with a potentially large bias
error.

Denote by X the function domain: this is a non-empty set known as the input
space in the machine learning community. A basic requirement for the Hilbert
space H is that every function in H has to be well-defined pointwise for any
x ∈ X . Moreover, we assume that pointwise evaluations are continuous, linear
and bounded over H , i.e.,

∀x ∈X , ∃ ςx <∞, such that |g(x)| ≤ ςx‖g‖H . (3.5)

Before jumping into the details of regularization in RKHSs, we give a brief overview
of some required basics related to kernel functions and RKHSs.

3.2.2 Kernel functions and RKHSs

Let us first recall the definition of a Mercer kernel. Note that, in the sequel, we use
this definition both w.r.t. real- and complex-valued spaces. Therefore, in this sec-
tion, we will introduce the general case of complex-valued spaces and the concept
of real-valued ones follows directly.

Definition 3.1 (Mercer kernel) (Schölkopf and Smola 2002) Let X be a metric space.
A complex-valued function K : X ×X → C is called a Mercer kernel if it is contin-
uous, symmetric3 and satisfies

∑m
i,j=1 aia

∗
jK(xi, xj) ≥ 0 for any finite set of points

{x1, . . . , xm} ⊂ X and {a1, . . . , am} ⊂ C. If K satisfies all the stated conditions, but
not continuity, it is called positive definite.

Definition 3.2 (Reproducing kernel) Let H be a Hilbert space of complex-valued
functions on X with inner product 〈·, ·〉H . A complex-valued functionK : X ×X → C
is a reproducing kernel for H if

1. ∀x ∈ X ,Kx = K(x, ·) ∈ H , where Kx is the so-called kernel section centered at
x;

2. The reproducing property holds, such that

f(x) = 〈f(·),K(x, ·)〉H , ∀x ∈X ,∀f ∈H .

A Hilbert space of complex-valued functions which possesses a reproducing ker-
nel is called an RKHS (Wahba 1990). Moreover, due to the Moore-Aronszajn theo-
rem (Aronszajn 1950), there is a one-to-one correspondence between an RKHS H
and its reproducing kernel K, i.e., to every positive definite kernel K, there is a
unique RKHS H with K as its reproducing kernel and vice versa.

3Symmetric here means that K(x1, x2) = K(x2, x1).
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Definition 3.3 (RKHS) LetK be a positive definite kernel function and H is the associ-
ated RKHS. Then, H is defined to be the completion of Span {Kx := K(x, ·) : x ∈X },
i.e., the functions in H can be written as

H =
{
f : X → C | f(·) =

∞∑
i=1

aiKxi(·), xi ∈X , ai ∈ C, ‖f‖H < +∞
}
, (3.6)

where ‖f‖H =
√
〈f, f〉H is the norm in H induced by the inner product defined in H

as

〈f, f ′〉H =
∞∑
i=1

∞∑
j=1

aib
∗
jK(xi, xj),

for f =
∑∞
i=1 aiKxi and f ′ =

∑∞
j=1 bjKxj .

Since the reproducing kernelK completely characterizes the associated RKHS H ,
in the sequel we shall denote that RKHS as HK and its inner product as 〈·, ·〉K with
the associated norm ‖ · ‖K . It is worth to emphasize that Definition 3.3 implies
that all f ∈ HK inherit their properties from the kernel, e.g., the continuity of K
implies the continuity of all f ∈ HK (Cucker and Smale 2001). It can be said that
this property is the most crucial one and considered to be the main advantage of
RKHSs-based estimators. High-level assumptions, e.g., smoothness, integrability,
etc., can be easily encoded in HK via the associated kernel function K. Another
interesting property of RKHSs in the context of regularization methods is that,
they allow to easily obtain a closed-form and unique solution of problem (3.4),
even if the employed RKHS is an infinite-dimensional space. This comes from the
following Representer Theorem (Kimeldorf and Wahba 1970; Schölkopf et al. 2001;
Argyriou and Dinuzzo 2014; Suykens et al. 2002).

Theorem 3.1 (Representer Theorem) If HK is an RKHS, with K the associated ker-
nel function, the solution of (3.4) for H = HK is unique and given by

ĝ(·) =
N∑
i=1

ciKxi(·), (3.7)

where c = [c1 · · · cN ]> is defined by

c = (K + γIN)−1YN ,

with IN being the N ×N identity matrix and K is the kernel matrix whose (i, j)-th entry
is K(xi, xj).

The similarity between the solution of the classical parametric approach and the
regularized estimate can be easily seen from (3.3) and (3.7): both of them are a
linear combination of some basis functions. However, a fundamental difference is
that in (3.3) the basis functions are predefined and their number is independent of
the size of data set. On the other hand, the number of the basis functions in (3.7),
i.e., kernel sections at the input data Kxi(·), is not fixed a priori and depends on
the size of the data vector.
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To illustrate the strength of the introduced regularization approach, i.e., reg-
ularization in RKHSs, over the classical approaches, we consider a simple simu-
lation example. Consider the following unknown nonlinear function to be esti-
mated

g0(x) = exp(sin(8x)), 0 ≤ x ≤ 1. (3.8)

Our goal is to reconstruct this function from a set of N = 100 noisy measurements
generated according to

yi = g0(xi) + εi, with x ∼ U(0, 1), (3.9)

where U denotes a uniform distribution on the interval [0, 1] and εi ∼ N
(
0, 0.22),

i.e., additive white Gaussian noise with variance σ2
ε = 0.22. We adopt (3.4) with

the Gaussian kernel that encodes the smoothness of the unknown function, see
(3.14) for the exact definition of that kernel. Figure 3.1 shows three cases for dif-
ferent values of the regularization parameter γ:

• γ � γopt as shown in the upper part of the figure: too large γ results in a
large bias. The estimate is too smooth and unable to follow the data due to
overweighting of the regularization term.

• γ � γopt as shown in the middle part of the figure: too low γ results in an
estimate with large variance due to the overweighting of the data-fit term.
Hence, a too flexible model is obtained that overfits the measurements.

• γ = γopt as shown in the lower part of the figure: The optimal regularization
parameter is obtained by a so-called Oracle estimator that makes use of the
knowledge of the true function to find the optimal γ that minimizes the MSE,
achieving an optimal bias/variance trade-off.

It is worth to mention that the Oracle estimator is not implementable in reality.
An attractive approach to tune γ to obtain a well-balanced bias/variance trade-off
will be detailed in the next section in the light of the Bayesian interpretation of
the considered estimator (Carlin and Louis 2000; Maritz and Lwin 1989). It can
be seen from the above discussion that the choice of γ replaces the model order
selection in the classical parametric approach. However, tuning γ can be done in
a continuous manner, while in the classical framework, we choose a model from
a set of discrete number of candidate models.

3.2.3 Orthonormal basis viewpoint of kernels

Under certain conditions, Mercer’s theorem allows to represent the kernel func-
tion K in terms of orthonormal eigenfunctions and eigenvalues (Mercer 1909;
Hochstadt 1988). First, let us introduce some definitions before stating Mercer’s
theorem.
Let K : X ×X → C be a Mercer kernel where X is a metric space and not neces-
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Figure 3.1: Controlling complexity with regularization in RKHSs: true underlying
function (solid line), noisy data (o) and estimate (dashed line).
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sarily compact4. Let µ be a nondegenerate Borel measure5 on X , meaning that for
every nonempty open set V ⊂ X , µ(V ) > 0. Assume a sequence of compactness
structure for X : X =

⋃+∞
i=1 Xi, where X1 ⊂ X2 ⊂ · · · ⊂ Xi ⊂ · · · and each Xi

is compact with finite measure, i.e., µ(Xi) < +∞. Moreover, any compact subset
of X is contained in Xi for some i.
For a given kernelK and φ ∈ L2,µ(X ), i.e., the Hilbert space of squared integrable
functions on X for metric µ, we define the integral operator on L2,µ(X ):

LK(φ(x)) ,
∫

X

K(x, x′)φ(x′)dµ(x′), x ∈X . (3.10)

To guarantee that LK(φ) ∈ L2,µ(X ), one can assume that the kernel is squared
integrable, i.e., ∫

X

∫
X

K2(x, x′)dµ(x)dµ(x′) < +∞ (3.11)

which also guarantees that the integral operator LK is bounded and compact6.

Theorem 3.2 (Mercer’s theorem) (Sun 2005) Consider a Mercer kernel K(x, x′) de-
fined on a not necessarily compact metric space X with a nondegenerate Borel measure
µ. assume that

A1) Kx ∈ L2,µ(X ) for every x ∈X .

A2) K is squared integrable, i.e., (3.11) is satisfied.

Then, the following results hold:

R1) LK is a positive, bounded and compact operator.

R2) LK has at most countably many positive eigenvalues
{
λ̆i

}∞
i=1

, such that λ̆1 ≥

λ̆2 ≥ · · · > 0, and corresponding eigenfunctions (eigenvectors) {ϕi}∞i=1 with
ϕi ∈ L2,µ(X ),

4A metric space X is called compact if and only if it is complete and totally bounded. It is said to
be totally bounded if and only if for every real number ς > 0, there exists a finite collection of open
balls in X of radius ς whose union contains X .

5A finite Borel measure on X is a map µ : B(X )→ [0,∞) such that µ(∅) = 0 and

if X1,X2, . . . ∈ B(X ) are mutually disjoint ⇒ µ(∪∞i=1Xi) =
∞∑
i=1

µ(Xi),

where B(X ) is known as the Borel σ-algebra (σ-field) and is the smallest σ-algebra in X that contains
all open subsets of X .

6Recall that a linear operator L : H → H where H is a Hilbert space, is called bounded if there
exists a M > 0 such that for all f ∈ H , where M is independent of f , ‖L(f)‖H ≤ M‖f‖H . It is
said to be compact if for every bounded sequence {fi}∞i=1 in H , the sequence {L(fi)}∞i=1 contains a
convergent subsequence.
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〈ϕj , ϕk〉L2,µ =
{

1, if j = k;
0, otherwise.

Moreover, LK(ϕk(x)) = λ̆kϕk(x).

R3) K(x, x′) =
∑∞
k=1 λ̆kϕk(x)ϕk(x′) where the series converges absolutely and uni-

formly on X̄ × X̄ ′ with X̄ ,X̄ ′ being any compact subsets of X .

R4)
{√

λ̆k ϕk

}∞
k=1

forms an orthonormal basis for HK , the associated RKHS with K.

Lemma 3.1 (Wahba 1990, Lemma 1.1.1 page 4). Let K be a Mercer kernel that satis-
fies (3.11). If

ai =
∫

X

f(x)ϕi(x) dµ(x),

then f =
∑∞
i=1 aiϕi ∈HK if and only if

∞∑
i=1

a2
i /λ̆i <∞.

Furthermore, ‖f‖2K =
∑∞
i=1 a

2
i /λ̆i.

As a result of the above discussion, the RKHS HK associated with a Mercer kernel
K can be equivalently defined as (Rasmussen and Williams 2006)

HK =
{
f : X → C | f(x) =

∞∑
i=1

aiϕi(x), with
∞∑
i=1

a2
i /λ̆i < +∞

}
. (3.12)

This means that any function f ∈ HK can be represented as a linear combination
of the orthonormal basis of the kernel K. Moreover, the inner product 〈f, f ′〉K for
any f, f ′ ∈HK with f =

∑∞
i=1 aiϕi and f ′ =

∑∞
i=1 biϕi can be represented as

〈f, f ′〉K =
∞∑
i=1

aib
∗
i /λ̆i.

It is worth to mention that the spectral representation in (3.12), which is related
to the series expansion given in Item R3 of Theorem 3.2, is not unique since the
eigen-decomposition depends on the measure µ. However, all such spectral forms
associated with K lead to the same RKHS.

3.3 Gaussian process regression

In this section, GPR is briefly introduced. More specifically, important concepts of
the Bayesian inference mechanism within the GP framework are introduced, i.e.,
concepts of prior, likelihood and posterior. Let us start by introducing the definition
of a stochastic process (Kamen and Heck 2007).
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Definition 3.4 (Stochastic process) A stochastic process is S(t,R), where t ∈ I rep-
resents the index set (time), and R is the outcomes of the sample space, realizations of
functions (signals or time sequences), respectively.

One can distinguish the following:

• S(t,R) is a collection of realized functions (signals), i.e., {s1(t), s2(t), . . .};

• S(t, ri) is a particular realized function (signal), i.e., si(t);

• S(t0,R) is a random variable, a possible collection of function (signal) values
at time t0, i.e., {s1(t0), s2(t0), . . .}, for a given ri ∈ R ;

• S(t0, ri) is a particular value of si at index (time) t0.

A probability distribution/multivariate distribution describes scalar/vector ran-
dom variables, respectively, while a stochastic process extends such concept to
functions. A GP is a distribution over functions and a generalization of the Gaus-
sian distribution to an infinite-dimensional function space, i.e., by considering
a function as an infinitely long vector with each entry to represent the function
value at a certain input. It offers an attractive framework that is capable of captur-
ing functional relations consistently with finite observations.

Definition 3.5 (Gaussian process) (Rasmussen and Williams 2006) A GP is a col-
lection of random variables, for which every finite number of these variables have a joint
Gaussian distribution.

As in the Gaussian distribution case, a GP is completely characterized by its mean
and covariance functions

m(x) = E {f(x)} , K(x, x′) = cov (f(x), f(x′)) ,

respectively, where f(x) is a real function and K(x, x′) is known as the kernel
function and it specifies the covariance between any two function values at x and
x′. In the sequel, we shall write the Gaussian process as

f(x) ∼ GP(m(x),K(x, x′)).

3.3.1 Bayesian inference

In the standard GP regression, a data set DN is assumed to be generated according
to (3.1), see Section 3.1.1 for more details on the generating model. Bayesian infer-
ence is a 3-step approach (Rasmussen and Williams 2006; Bishop 2006), namely:
i) specify a prior distribution on the unknown function g; ii) observe the data,
i.e., DN ; iii) compute the posterior distribution on g. Indeed, the posterior is a
refinement of the prior based on the incorporated evidence from the observation.
Next, we briefly discuss the above-mentioned three steps of the Bayesian infer-
ence within the GP framework.
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Prior

With GPR, we consider the unknown function g as a random function and pos-
tulate a prior over it that represents our beliefs and the high-level assumptions
about g, e.g., smoothness, stability, etc. More specifically, we assume a zero-mean
GP prior on the unknown function g, i.e.,

g(x) ∼ GP(0,Kβ(x, x′)), (3.13)

with Kβ to denote the covariance/kernel function parameterized by an unknown
hyperparameter vector β. For instance, a well-known choice for the kernel func-
tion that encodes both smoothness and stationarity of the unknown function is
the Radial Basis Function (RBF), also known as Squared Exponential (SE) (Rasmussen
and Williams 2006)

Kβ(x, x′) = β2
α exp

(
−1

2(x− x′)>Γ−1(x− x′)
)
, (3.14)

where x, x′ ∈ RnX , β2
α is a scaling parameter that represents the signal variance

and Γ = diag
([
βw

2
1 · · ·βw

2
nX

])
is a diagonal matrix of squared characteristic length-

scales {βwi}
nX
i=1. In this case, the so-called hyperparameter vector β, which char-

acterizes the kernel, consists of β2
α and {βwi}

nX
i=1. The effect of the characteristic

length-scale parameter, i.e., βwi, can be, informally, understood as the distance one
has to move in the input space before the function value can significantly change.
Figure 3.2 shows the effect obtained by varying βw. It is worth to emphasize that
the values of βwi give the relevant importance of the associated inputs, i.e., if βwi
is very small, then xi has a strong effect on the predicted output and vice versa.
This can be used to automatically determine the relevant inputs to be included in
the input regressor from data. The optimal choice of the covariance/kernel func-
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Figure 3.2: The covariance function Kβ in (3.14) for nX = 1 and with βα = 1 and
different values of βw, i.e., βw = 0.5, 1, 2.

tion is problem dependent. A large variety of kernel functions is introduced in
the literature. In general, the covariance functions can be classified into two major
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groups, namely, stationary and non-stationary covariance functions (Rasmussen
and Williams 2006, Chapter 4).

A stationary covariance function is a function of the distance between the in-
puts, i.e., (x − x′), and thus is invariant to translations in the input space. More-
over, if the covariance function is a function of only |x − x′|, then it is called
isotropic. A well-known example is the SE covariance function, introduced in
(3.14). It is infinitely differentiable and has squared integrable derivatives of all
order (Rasmussen and Williams 2006), i.e., it is a smooth function. Other common
stationary covariance functions are exponential covariance, rational quadratic covari-
ance, Matérn covariance, periodic covariance, Cubic Spline covariance (CS), etc.

Non-stationary covariance functions might also be interesting in some cases,
e.g., to describe the change of the underlying function behavior over time. Some
common non-stationary covariance functions include, e.g., linear covariance, poly-
nomial covariance, neural network covariance, etc. We refer the interested reader for
more detailed exposition on this topic to Schölkopf and Smola (2002) and Hof-
mann et al. (2008).

Posterior

The prior is refined by incorporating evidences from the observations DN which
results in the posterior distribution over g. As can be seen by applying Bayes’
Theorem

p(g | XN , YN , β)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(YN | g,XN , β)×

prior︷ ︸︸ ︷
p(g | β)

p(YN | XN , β)︸ ︷︷ ︸
marginal likelihood

, (3.15)

where p denotes a Probability Density Function (PDF) and p(y | x) denotes that the
distribution of y is conditioned on x. The likelihood in (3.15), i.e., p(YN | g,XN , β),
encodes the assumed noise model, i.e., if we assume additive independent and
identical distributed (i.i.d.) Gaussian noise, the observations yi will be condition-
ally independent given XN , then the likelihood can be written as

p(YN | g,XN , β) =
N∏
i=1

p(yi | g(xi), β)

=
N∏
i=1
N
(
yi | g(xi), σ2

ε

)
= N

(
YN | g(XN ), σ2

ε IN
)
. (3.16)

Furthermore, p(YN | XN , β) is known as the Marginal Likelihood (ML) or evidence,
which is the likelihood of the hyperparameter β given the data DN after marginal-
izing out the unknown function g, more details will follow in the next subsection.
Finally, the prior, i.e., p(g | β), gives/delivers our beliefs about the unknown func-
tion.
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Figure 3.3 illustrates the involved operations in Bayes’ Theorem (3.15). More
specifically, we start by the prior knowledge and by absorbing the available infor-
mation in the data record (likelihood), i.e., simply multiply the prior distribution
by the likelihood distribution and then normalize the result of the multiplication,
the prior knowledge can be further improved and the posterior distribution is
obtained. For a given value of the hyperparameter vector β, the GP prior assump-
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Figure 3.3: The prior distribution N
(
0, 2.52) and the likelihood or measurement

distribution N
(
2, 1.52). To obtain the posterior distribution according to (3.15),

we can simply multiply both the prior and likelihood distributions and then nor-
malize the result.

tion together with the Gaussian assumption on the noise, i.e., ε(k) ∼ N
(
0, σ2

ε

)
and accordingly the likelihood is Gaussian, results in a GP posterior7. As a conse-
quence, the associated estimation problem has an analytic form. The GP posterior
distribution is used to make predictions about g at an arbitrary input x∗ ∈ RnX as
will be shown later along with the expressions of the mean and covariance of the
resulting GP posterior.

Tuning model complexity: choosing the hyperparameters

As mentioned earlier, Bayesian inference can be seen as a three-level scheme as
shown in Figure 3.4, where at the right most of the figure we see the observation
level, i.e., the available data record DN , Level 1 simply represents the unknown
function g that we are interested in estimating in terms of its distribution given the
data, Level 2 is the choice of hyperparameters that specify the distribution of the
unknown functions values, e.g., how much these values are correlated, and Level
3 represents the possible different models, e.g., by considering various covariance
functions, hence model structure selection is needed. However, in this thesis, we
only consider a two-level inference scheme, i.e., Level 1 and 2 as we only consider
a single covariance function that is chosen a priori. In the light of the considered
two-level inference scheme, a critical step in the GPR framework is to design the

7Although, the likelihood is a finite probability distribution, the GP posterior is infinite dimensional
because the GP prior is an infinite dimensional object (Deisenroth 2010).
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Figure 3.4: Graphical model of the three-level scheme in Bayesian inference.

kernel function that encodes the expected high-level assumptions about the un-
known function. Such a step involves parameterizing the kernel function with a
few number of parameters known as hyperparameters and at the same time mak-
ing it flexible enough to describe a wide range of expected properties with such
simple parameterization. Accordingly, the next step is to tune the hyperparame-
ters from the observed data. This is a critical step, since these hyperparameters
control the bias/variance trade-off and hence the “complexity” of the estimated
function versus its accuracy.

In the following, we focus on hyperparameters estimation. To study the ef-
fect of varying the hyperparameters on GP prediction, consider 40 data points
(red circles in Figure 3.5), generated from a GP with the SE kernel (3.14) using
(βα, βw, σε) = (1, 1, 0.1). Figure 3.5 (left part) shows twice the standard devia-
tion σ of the prediction with GP posterior (used for prediction) calculated using
the true hyperparameters, i.e., the 2σ bound which corresponds to a 95% confi-
dence internal. It is interesting to note that uncertainty increases for the input
values away from the training point due to the lack of information in these re-
gions. Now, let us change the value of the hyperparameters of the posterior GP to
(βα, βw, σε) = (1, 0.3, 0.04). The effect of the new situation can be seen in the mid-
dle part of Figure 3.5. The model becomes more complex and overfits the data.
By changing the hyperparameters to (βα, βw, σε) = (1, 3, 0.9), the model becomes
simple and unable to follow the data as can be seen in the right part of Figure 3.5.

Now, we have two options to go forward, w.r.t. tuning the hyperparameters:
i) a fully Bayesian approach; ii) or a so-called empirical Bayes approach. In the
fully Bayesian approach, a hyper-prior p(β), i.e., an assumed distribution of β, is
placed on β and then it is integrated out:

p(g) =
∫
β

p(g | β)p(β) dβ

p(YN | XN ) =
∫
β

∫
g

p(YN | XN , g, β)p(g | β)p(β) dg dβ

=
∫
β

p(YN | XN , β)p(β) dβ,

which is analytically intractable due to the complex expression resulting from
p(YN | XN , β), which is involved in the integration. One way to deal with such
situation is to employ numerical approximation methods, e.g., Monte-Carlo (MC)
methods (Svensson et al. 2015), which are computationally expensive. Alterna-
tively, the empirical Bayes approach (Maritz and Lwin 1989; Carlin and Louis
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2000) can be utilized. The main idea behind the empirical Bayes approach is to fo-
cus on obtaining a good point estimate β̂ of β and then to condition our inference
on that value instead of marginalizing out the hyperparameters. This approach
will be detailed below. The posterior on the hyperparameters is given by
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Figure 3.5: Left part: Data (red circle) is generated from a GP with (βα, βw, σε) =
(1, 1, 0.1) along with the 95% confidence interval (shaded area). Middle part: com-
plex model with large variance when using (βα, βw, σε) = (1, 0.3, 0.04). Right part:
Simple model with large bias when using (βα, βw, σε) = (1, 3, 0.9).

p(β | XN , YN ) = p(YN | β,XN )× p(β)
p(YN | XN ) , (3.17)

where p(β) is the hyper-prior on β. A popular approach to learn the hyperparam-
eters from data is to choose the hyper-prior p(β) to be flat, i.e., any values of β is
equally possible a priori, which makes the posterior over β to be proportional to
the marginal likelihood in (3.15), i.e., p(β | XN , YN ) ∝ p(YN | XN , β). Hence, the
Maximum a Posterior (MAP) estimate of the hyperparameters β equals the maxi-
mum marginal likelihood estimate. Therefore, the hyperparameters can be found
by maximizing the marginal likelihood of the output w.r.t. to β (MacKay 1999)

β̂ = argmax
β

logp(YN | XN , β), (3.18)

where the log-marginal likelihood function is

logp(YN | XN , β) = log
∫
g

p(YN | g,XN , β)p(g | β) dg

= −N2 log(2π)− 1
2Y
>
N

(
K β + σ2

ε IN
)−1

YN︸ ︷︷ ︸
“data-fit” term

− 1
2 log det(K β + σ2

ε IN)︸ ︷︷ ︸
complexity term

. (3.19)



66 Chapter 3 Kernel Methods in Machine Learning

Employing (3.18) to tune the hyperparameters leads to an automated trade-off
between data-fit and model complexity (Pillonetto and Chiuso 2015; Rasmussen
and Williams 2006; MacKay 2003). This can be seen as a manifest of Occam’s razor
principle to use the simplest model that explains the data (under the given prior
assumptions) (Rasmussen and Williams 2006, Section 5.2). However, the price to
be paid is that maximizing the marginal likelihood (3.18) is a nonlinear and non-
convex optimization problem, prone to local minima. Other tuning methods to
tune the hyperparameters are available, e.g., Cp statistics (Hastie et al. 2009), CV
(Ljung 1999), Predicted Residual Sums of Squares (PRESS) (Wang and Cluett 1996),
Generalized Cross-Validation (GCV) (Golub et al. 1979), Stein’s Unbiased Risk Estima-
tor (SURE) (Stein 1981). It is worth to mention that the superiority of maximizing
the marginal likelihood over these classical tuning methods has been investigated
in Pillonetto and Chiuso (2015), showing that it can better balance data fit and
model complexity.

Univariate prediction

Given a test point x∗ ∈ RnX , the joint distribution of the observed values, i.e., YN ,
and the function value at the arbitrary test location, i.e., g(x∗), under the GP prior
(3.13), is8 [

YN
g(x∗)

]
∼ N

(
0,
[

K (XN , XN ) + σ2
ε I k (XN , x∗)

k (x∗, XN ) K(x∗, x∗)

])
(3.20)

where K (XN , XN ) is the kernel matrix and its (i, j)-th element [K ]ij = K(xi, xj)
and k (x∗, XN ) = k >(XN , x∗) = [ K(x∗, x1) · · · K(x∗, xN ) ] denotes a vector
of covariances between the test point and the training points. From (3.20) and
by applying the well-known Gaussian identities (Rasmussen and Williams 2006),
the predictive marginal distribution of g(x∗) conditioned on the observations is
Gaussian and is given by

p(g(x∗) | XN , YN , β) ∼ N (ĝx∗ , cov(g(x∗) | YN , XN )) (3.21)

where

ĝx∗ = k (x∗, XN )
[
K (XN , XN ) + σ2

ε IN
]−1

YN =
N∑
i=1

ciK(xi, x∗), (3.22)

is the minimum variance estimate of g(x∗), i.e., it is equal to E {g(x∗) | XN , YN , x∗},
and ci denotes the i-th element of

c =
(

K (XN , XN ) + σ2
ε IN
)−1

YN .

8Note that the dependency on the hyperparameter β is dropped since we replace β with the es-
timated value, e.g., maximizing the marginal likelihood. This is known also as the empirical Bayes
method (Carlin and Louis 2000).
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Furthermore, the associated covariance with the estimate ĝ(x∗) in (3.22) is given
as

cov(g(x∗) | YN , XN ), E
{
g(x∗)g>(x∗) | XN , YN

}
=K(x∗, x∗)−k (x∗, XN )

[
K (XN , XN )+σ2

ε IN
]−1

k (XN , x∗),
(3.23)

which defines the uncertainty of the estimation.

To gain more insights into the Bayesian inference technique within the GPR
framework, the left part of Figure 3.6 shows a few samples from a GP prior dis-
tribution that favors smooth functions by employing the Gaussian kernel. The
shaded area represents a 2σ bound computed pointwise, i.e., at each input loca-
tion x, . By observing some data, i.e., the red circles in the right part of Figure 3.6,
the prior uncertainty about the unknown function has been significantly reduced
as shown in the figure. Note that the dashed lines now represent samples from the
GP posterior distribution that has been computed based on the observations. As
mentioned, the shaded area represent the pointwise 2σ bound and it indicates the
expected accuracy of predicting the unknown function value at previously unseen
test inputs. More specifically, for test inputs that are located in the well-presented
regions by training inputs, the uncertainty becomes small. On the other hand,
for the test inputs that are located away from these regions, the GP posterior falls
back to the GP prior, where no information is available, which can be easily seen
at the left corner of the right panel of Figure 3.6.

Note that the uncertainty at the measurements, i.e., training points, is zero,
since while developing the figure, we have assumed that the noise is not present.
If the measurements are noisy, then the uncertainty will be accordingly increased
at all the data points including the training points themselves.

Remark 3.1 In the above discussion, we have considered making a prediction at a deter-
ministic test input x∗, which will be also the case along the whole thesis. In case of making
a prediction at uncertain test input, i.e., the input has a probability distribution, the map-
ping of such distribution through a nonlinear function, i.e., the GP posterior, results in a
non-Gaussian and non-unimodal predictive distribution. As a result, an approximation
has to be performed, e.g., moment matching where the exact predictive distribution is
approximated by a Gaussian distribution that possesses the same mean and covariance as
the exact predictive distribution (Deisenroth 2010).

Multivariate prediction

In the previous subsections, we have considered a univariate prediction, i.e., x∗ ∈
RnX , y∗ ∈ R. However, in case of multivariate prediction, i.e., y∗ ∈ RnY , the cor-
relation between different function values should be considered, To do so, the
covariance function K(x, x′) can be replaced by a covariance matrix

K(x, x′) =

 K11(x, x′) · · · K1nY(x, x′)
...

. . .
...

KnY1(x, x′) · · · KnYnY(x, x′)

 , (3.24)
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Figure 3.6: Left part: Samples from the GP prior distribution. The mean is shown
with a solid line. With no observed data, the prior uncertainty about the unknown
function is constant everywhere. Right part: Samples from the GP posterior dis-
tribution after observing 6 data points (red circles). The mean of the posterior is
also shown with a solid line. The posterior uncertainty is significantly reduced
due to the added information from the measurements. Such uncertainty largely
depends on the locations of the training data points.

where Ki,j denotes the covariance between the i-th and j-th output channels.
However, by assuming that the function values g1(x∗), . . . , gnY(x∗) are condition-
ally independent given an input x∗, then the off-diagonal entries in (3.24) become
0. Indeed, the output values from different output dimensions can be only cor-
related via x and since we are considering a deterministic input, then the target
outputs are independent, otherwise, i.e., if the input x is uncertain, then the off-
diagonal entries should be taken into account. So, in case of multivariate predic-
tion with a deterministic test input x∗, nY independent GP models are trained
with the same training inputs XN and with different training outputs YN,i =
[yi(1) · · · yi(N)]> , i = 1, . . . , nY.

3.4 Numerical implementation

The overall algorithm for regularized estimation consists mainly of two parts:

• Hyperparameters estimation: This step involves the minimization of the
cost function, i.e., the log-likelihood (3.18) whose single evaluation requires
O(N3) operations;

• Computation of the function estimate: This step requires O(N3) operations.

It is well-known that training and predicting with GP becomes problematic when
the data set size becomes large as the computational burden becomes prohibitively
expensive.
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3.4.1 Hyperparameters optimization methods

There are many available options for the optimization of the log-likelihood func-
tion.

Deterministic optimization methods, using e.g., gradient-based methods (Nelles
2001) like conjugate gradient and trust region methods (Zhang and Leithead 2005;
Rasmussen and Williams 2006), require the computation of the partial derivatives
of the objective function:

∂p(YN | XN , β)
∂βi

= −1
2tr
(

K−1
β

∂K β

∂βi

)
+ 1

2Y
>
N K−1

β

∂K β

∂βi
K βYN . (3.25)

where tr(·) is the trace operator. The computation of the partial derivative in-
volves the computation of the inverse of the covariance matrix of size N × N
during every iteration with the computational complexity O(N3). However, the
results of such methods depend heavily on the initial values of the hyperparame-
ters. This becomes even more relevant in case of multidimensional systems with
many local optima associated with the objective function. Alternatively, stochas-
tic optimization methods can be employed to deal with the multiple optima issue,
e.g., genetic algorithm, differential evolution and particle swarm optimization. A
drawback of these methods is that the computational complexity becomes a pro-
hibitive factor in a large scale situation, see (Kocijan 2016, Section 2.4.2) for more
details.

3.4.2 Numerical implementation

GP modeling has a noticeable drawback related to computational implementa-
tion, since it involves expensive operations as matrix inversion and calculation
of the log determinant of the covariance matrix, which restricts the number of
data points that can be handled within this framework. As a result, an efficient
implementation is needed rather than plain computation of the above-mentioned
operations. A common and practical approach is to employ Cholesky decomposi-
tion of K to compute the objective function (3.19) and its derivative (3.25) to avoid
the direct inversion of the covariance matrix. This approach is summarized in
Algorithm 1.

Algorithm 1, which tackles the GPR implementation using Cholesky decom-
position instead of directly inverting the covariance matrix, provides a fast, effi-
cient and numerically stable implementation. The computational complexity is
significantly decreased: i) Cholesky factorization in Line 4 costsO(N3/6); ii) Solv-
ing the two triangular systems in Line 5 costs O(N2/2); iii) L\k in Line 10 costs
O(N2/2) for each test input. Note that, for large N , it may not be possible to
represent the determinant, which is needed to compute the cost function, i.e., the
log-likelihood. However, such a problem can be tackled via representing the log
determinant with the Cholesky decomposition as shown in Line 11.

There are many other approaches to deal with large data records, e.g.,
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Algorithm 1 Numerically efficient implementation of the GPR approach.

Require: XN (inputs), YN (outputs), K (covariance function), x∗ (test input), σ2
ε

(noise variance).
1: Hyperparameter tuning:
2: Initialize β.
3: Compute K β .
4: Compute L = Cholesky(K β + σ2

ε IN).
5: Solve Lγt = YN for γt and L>γt′ = γt for γt′ to get γt′ = K−1

β YN .

6: Compute logp(YN | XN , β) and ∂p(YN |XN ,β)
∂β using γt′

7: Repeat: Change β and go to Step 3 until − logp(YN | XN , β) is minimized.
8: Function estimation:
9: Compute the prediction mean g(x∗) = k >γt′

10: Compute the prediction variance cov(g(x∗)) = K(x∗, x∗)− (L\k )>(L\k ).
11: Compute log-likelihood logp(YN | XN , β) = − 1

2Y
>
N γt′ −

∑
i log Lii − N

2 log 2π
Return: g(x∗), cov(g(x∗)) and logp(YN | XN , β).

1. sparse GP learning (Quiñonero-Candela and Rasmussen 2005): These ap-
proaches are aiming at reducing the computational burden associated with
training and prediction by finding a low-rank approximation of K ;

2. online GP learning including evolving GP (Petelin and Kocijan 2011): For
these methods, the structure of the GP model and the associated hyperpa-
rameters are adapted online and the computational complexity is kept con-
trolled by keeping the size of the informative data set restricted according to
the considered application;

3. Local GP (LGP) (Nguyen-Tuong et al. 2010): Inspired by locally weighted
regression, a method for speeding-up the training and prediction process
has been presented, where the training data is partitioned into local regions
and an independent Gaussian process model is learnt for each region. The
number of data points in the local models is limited, where insertion and
removal of data points can be treated in a principled manner. The prediction
for a query point is performed by weighted average.

3.5 The connection between GPR and RKHSs

The connection between regularized function estimation in RKHSs and Bayesian
estimation of continuous-time GP was initially studied in Kimeldorf and Wahba
(1970) in the context of spline regression (Wahba 1990). More specifically, the reg-
ularization network (3.4) has a statistical interpretation, where the function g is
assumed to be a particular realization of a zero-mean GP with a prior covariance
proportional to K, i.e., the reproducing kernel associated with HK , and that func-
tion is assumed to be independent of an additive white Gaussian measurement
noise. The latter setting has been investigated in details in Section 3.3, where it
has been shown that the predicted function value at a test input, i.e., ĝ(x∗) is the
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posterior mean and hence the minimum variance estimate of g(x∗). Moreover,
such estimate has a closed-form as given in (3.22) and it coincides with the ex-
pression obtained by the representer theorem (3.7). Next, we show the details of
such a connection in the Gaussian measurement noise case, which is of special in-
terest for our purposes. The connection in the non-Gaussian case is not discussed
here, since it is not relevant to the work in the subsequent chapters, however, a de-
tailed discussion on that case can be found in Aravkin et al. (2015). The following
discussion depends largely on Aravkin et al. (2015).

Let us start by setting up the necessary assumptions.

Assumption 3.1 Given a data set DN = {xi ∈ X , yi ∈ R}Ni=1, which is generated
according to (3.1), i.e., in the presence of an additive measurement noise and a covariance
function K on X ×X that satisfies Definition 3.1 such that for any finite sequence of
points {xi}ni=1, the vector [g(x1) · · · g(xn)]> is a zero-mean Gaussian random variable
with the covariance between any two elements cov(g(xi), g(xj)) = K(xi, xj), i.e., g is a
zero-mean Gaussian random field on X .

Assumption 3.2 For the given data set, i.e., DN , the corresponding loss function de-
noted by V is a function of (yi − g(xi)). For a given positive scalar σe, we have

p(YN | g) ∝
N∏
i=1

exp
(
−V(yi − g(xi))

2σ2
e

)
. (3.26)

Finally, the measurement noise is a random variable ei = yi − g(xi) independent of the
random function g.

The special case, where the loss function is V(yi− g(xi)) = (yi− g(xi))2, is equiva-
lent to the situation of Gaussian measurements noise, i.e., {ei} are i.i.d. Gaussian
random variables with variance σ2

e . In Assumption 3.2, it has been assumed that
g and e are independent, which means that g(x) and YN are jointly Gaussian for
any x ∈ X . As a result, the posterior p(g(x) | YN ) is also Gaussian. The posterior
mean, i.e., E{g(x | YN )}, and variance, i.e., cov(g(x) | YN ), can be easily obtained,
as given in (3.22), (3.23), respectively, which shows that in the considered Gaus-
sian case the minimum variance estimate coincides with ĝ in (3.7) obtained with
the representer theorem as the solution of the regularization network (3.4). The
following proposition summarizes the above discussion.

Proposition 3.1 Suppose the unknown function g satisfies Assumption 3.1 and p(YN |
g) satisfies Assumption 3.2 with the loss function V(yi − g(xi)) = (yi − g(xi))2. Then,
the minimum variance estimate of g(x) given the observation YN is given by (3.4), with
γ = σ2

e and H is the RKHS induced by K.

3.6 Summary

In this chapter, some preliminaries on kernel-based methods in machine learning
have been introduced to provide the required background for the next chapters.
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First, we have defined the regression problem along with the data-generating
model in Section 3.1. As a next step, the classical approach to tackle such problem
based on the LS approach is given, followed by a discussion that clarifies the dif-
ficulties associated with the selection of the required model complexity within the
classical approaches and the importance of the resulting bias/variance trade-off.
This has brought us to specific regularization approaches, i.e., kernel-based meth-
ods, that cope with these issues and can be handled within a unified framework
of RKHSs. The regularization in RKHSs including the definition of the kernel
function and the associated estimation problem has been introduced in Section
3.2. Moreover, attractive properties, i.e., analytic solution via the representer the-
orem and inclusion of high-level assumptions and prior knowledge via the kernel
function, of such estimators have been also discussed.

To tune the unknown hyperparameters associated with the kernel function,
an empirical Bayes approach can be utilized, hence, the statistical interpretation,
i.e., Bayesian inference within GPR framework, of the considered regularization
approach has been introduced in Section 3.3. Based on such an interpretation, a
maximum marginal likelihood approach to tune the unknown hyperparameters
has been thoroughly discussed. The issues associated with the implementation
and computational complexity of these methods, including tuning the hyperpa-
rameters and estimating the unknown function, has been briefly discussed in Sec-
tion 3.4. Finally, the connection between both regularization in RKHSs and the
Bayesian estimator of a Gaussian random field has been given in Section 3.5.

In the next chapter, we will discuss how to make the kernel-based methods
practical for dynamic system identification. Then, we will investigate how to
combine both concepts from machine learning community (Chapter 3) and sys-
tem theory for representing dynamic systems (Chapter 2) to design more efficient
regularized methods for LTI systems identification in both the time and the fre-
quency domains.
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Bayesian Identification of LTI
systems: An OBFs approach

This chapter is aiming at addressing Subgoal 1, i.e., systematic con-
struction of a kernel function that can describe a wide range of dy-

namic properties with a low-dimensional parameterization for the iden-
tification of LTI systems both in the time- and frequency-domain. This
chapter is organized as follows. In Section 4.1, the transition from ma-
chine learning to dynamic systems identification is introduced, where we
show how the approaches presented in Chapter 3 can be utilized for such
a task, and also discuss the available kernel functions for LTI system iden-
tification. This is followed by motivating the need for a new class of ker-
nels to describe the dynamic properties of LTI systems. In Section 4.2,
the OBFs based kernels in time-domain are presented and used to con-
struct a well-designed RKHS for impulse response estimation. Finally, in
Section 4.3, the frequency-domain formulation of these kernels is intro-
duced and directly applied for frequency-domain estimation of LTI dy-
namics. Monte-Carlo simulations show that OBFs-based kernels perform
well compared with the existing kernel functions, e.g., the TC and DC
kernels, especially for slow systems with dominant poles close to the unit
circle. Moreover, the capability of Kautz basis to model resonant systems
is also shown.

4.1 From machine learning to system identification

In Chapter 3, kernel-based methods in machine learning have been discussed.
The unknown function g is considered to be, in general, a static function, i.e.,
the underlying relation between the input and output does not depend on time.
However, for dynamic systems, such a relation which can correspond to various
representation forms of the system is dynamic and is dependent on time, more
specifically, it depends on the actual past trajectory of these signals, i.e., the input

73
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and output signals, as dynamic systems exhibit memory. Moreover, in the static
case, we utilize prior knowledge about the unknown function, e.g., smoothness,
but for dynamic systems, there are other properties that are needed to be taken
into account in addition to smoothness, such as stability to restrict the search space
for the model estimate to the actual assumptions of the identification setting. Ac-
cordingly, the presented approaches in Chapter 3 need to be adapted before being
applied to system identification; otherwise, unsatisfactory results may be obtained
as shown later in this chapter. Furthermore, it is also important to consider which
representation form of the to-be-captured system is most suitable to use machine
learning methods for system identification.

4.1.1 Problem statement

Data-generating system

Consider a SISO DT-FD-LTI stable data-generating system

y(t) = G0(q)u(t) + v(t), (4.1)

where v(t) is an additive noise process. In the following and for the sake of sim-
plicity, v(t) is assumed to be a white Gaussian noise process with variance σ2

e ,
independent of the input u. The case when v is colored can be handled in a
straightforward way as shown in (Pillonetto et al. 2011a, Section 5.3). The transfer
operator G0(q) can be represented as (see Chapter 2):

G0(q) =
∞∑
k=1

g(k)q−k, (4.2)

where G0 ∈ RH 2− (E) and g = {g(k)}∞k=1 is the impulse response of the system.
Note that, it is assumed without loss of generality that G0(q) does not have a
feedthrough term, i.e., g(0) = 0. The corresponding frequency response can be
defined as

G0(ejω) =
∞∑
k=1

g(k)e−jωk. (4.3)

Note that this representation form of the underlying system is well suited for the
function estimation concept of the machine learning methods: i) g is a function
of time; ii) data appears in a linear convolution structure; iii) no explicit choice of
model order or parameterization is needed as the IIR can express all stable systems
with arbitrary finite order; and iv) relationship or the corresponding function esti-
mation concept does not change fundamentally given time- or frequency-domain
data, see Section 4.3.

Given N data points DN = {u(t), y(t)}Nt=1, generated by (4.1), our goal is to
find an estimate ĝ of g that is as good as possible, in the sense that the MSE of
such an estimate, i.e., ĝ, is minimized. Accordingly, an estimate ĜN (ejω) of the
frequency response G0(ejω) can be obtained.
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Classical parametric approach

It has been discussed in Chapter 2 that one popular approach to deal with the
problem of identifying LTI systems based on IO data is to follow the prediction er-
ror framework. The starting point is to choose (postulate) a parameterized model
structure G(q, θ). Then, based on a given IO data of length N , we obtain an esti-
mate θ̂N of θ by minimizing the squared prediction error. This in fact yields the
model estimate ĜN (ejω) = G(ejω, θ̂N ). As previously discussed, among the avail-
able model structures, see Table 2.1, the truncated impulse response model, i.e.,
FIR, offers an attractive model structure that enjoys the linear-in-the-parameters
property. This property ensures that the parameters can be estimated via a con-
vex optimization problem according to the PEM estimation concept. Specifically,
consider a truncated IIR model, i.e., FIR of order n,

G(q, θ) =
n∑
k=1

g(k)q−k, θ = [g(1) · · ·g(n)]>. (4.4)

By writing the model as

y(t) = γ>r (t)θ, γ>r (t) = [u(t− 1) · · · u(t− n)] , (4.5)

or equivalently in a vector form

YN = ΥNθ + VN , (4.6)

where
YN = [y(1) · · · y(N)]> ,

ΥN = [γr(1) · · · γr(N)]> ,

VN = [v(1) · · · v(N)]> ,

and by following the well-known LS solution, we obtain:

θ̂LS
N =

[
ĝLS(1) · · · ĝLS(n)

]> = argmin
θ

WN (θ), (4.7)

where

WN (θ) = ‖YN −ΥNθ‖22 =
N∑
t=1

(
y(t)− γ>r θ

)2
. (4.8)

The analytic solution of (4.7) is given by

θ̂N =
[

1
N

Υ>NΥN

]−1 [ 1
N

Υ>NYN
]
. (4.9)

Remark 4.1 The issue of unknown initial conditions required to form the regressors γr,
i.e., the unknown inputs {u(k)}0k=−n+1, can be dealt with in various ways (Ljung 1999):
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• Non-windowed approach, where the first n data points in the data set are not used
and the summation in (4.8) starts from n+ 1;

• Pre-windowed approach, where the unknown inputs are assumed to be zero;

• Estimating the transient, i.e., the effect of initial condition, as an additional FIR
model with impulsive input.

In the following, the Pre-windowed approach is considered for the sake of nota-
tional simplicity.

Bias/variance trade-off

A well-known measure to quantify the quality of the resulting estimates is the fre-
quency wise MSE, or the expected spectral error, which in the SISO case is (Ljung
1999)

MN (ω) = E
{∣∣ĜN (ejω)−G0(ejω)

∣∣2} , (4.10)

where the expectation E is taken w.r.t. the noise process v. Such an expression
of the MSE can be divided into two parts, the bias BN (ω) and the variance parts
VN (ω):

BN (ω) = E
{
ĜN (ejω)

}
−G0(ejω), (4.11)

VN (ω) = E
{∣∣ĜN (ejω)− E{ĜN (ejω)}

∣∣2} , (4.12)

and the MSE can be equivalently written as

MN (ω) = VN (ω) + |BN (ω)|2. (4.13)

When the model becomes flexible, i.e., more complex with more parameters, the
bias term BN decreases and the variance term VN increases and vice versa. Instead
of aiming at an unbiased estimate, which may be associated with high variance,
it is often useful to allow some bias to reduce the variance in order to further
reduce the MSE. Indeed, this is the main idea employed by the regularization
approaches detailed in Chapter 3. It has been discussed at the beginning of this
section that these approaches should be adapted to be applied to dynamic system
identification, which is the topic of the next section.

4.1.2 Regularization techniques for dynamic system identifica-
tion

Next, the regularization approaches presented in Chapter 3 are adapted to be ap-
plicable in case of dynamic system identification in order to tackle the issues asso-
ciated with LTI system identification, e.g., model order selection, and to optimize
the bias/variance trade-off (Pillonetto and De Nicolao 2010; Pillonetto et al. 2014).
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Regularized estimation of IIR models

The main idea is to employ the regularization network (3.4), where the unknown
function is considered to be the impulse response g of the system and HK is con-
structed such that it is the RKHS of impulse responses of LTI systems induced by
a kernel K : N × N → R. These spaces are assumed to contain only causal func-
tions that represent impulse responses g of stable LTI systems. Denote Li[g] the
functional that is defined as:

Li[g] =(g~ u)(ti),

=
∞∑
k=1

g(k)u(ti − k).
(4.14)

The estimation of g given DN is then accomplished by:

ĝ = argmin
g∈HK

N∑
i=1

(
yi −Li[g]

)2 + γ‖g‖2K , (4.15)

Note that (4.15) coincides with (3.4) except that Li[g] replaces g in terms of charac-
terizing the “data-fit”. Moreover, it is known that (3.4) admits a finite-dimensional
solution according to Theorem 3.1. If the linear functionals Li are continuous on
HK , i.e.,

∀i, ∃ ςi <∞ :
∣∣Li[g]

∣∣ ≤ ςi‖g‖K , ∀g ∈HK ,

then, (4.15) also admits a finite-dimensional representation according to the fol-
lowing theorem.

Theorem 4.1 (Representer theorem for system identification) (Pillonetto et al.
2014) If HK is an RKHS, withK the associated kernel function and all Li are continuous
linear functionals on HK , the solution of (4.15) is unique and given by

ĝ(·) =
N∑
i=1

ciLi

[
Ki(·)

]
, (4.16)

where c = [c1 · · · cN ]> is given by

c = (K o + γIN)−1YN ,

and the (i, j)-th entry of K o, the so-called output kernel matrix, is given by:

Ko(i, j) =
(
u~ (u~K)(ti)

)
(tj),

=
∞∑
l=1

( ∞∑
k=1

K(k, l)u(ti − k)
)
u(tj − l).

(4.17)

Note that the solution (4.16) is similar to the expression obtained in the static case,
i.e., (3.7), but with replacing the kernel sections, i.e., Ki, see Definition 3.2, with
their convolution with the input u, i.e., Li[Ki(·)] =

∑∞
k=1K(·, k)u(ti − k).
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Regularized estimation of FIR models

For IIR models, the function domain is X = N; whereas, for FIR models of order
n, i.e., θ = [g(1) · · ·g(n)]> in (4.4):

X = {1, 2, . . . , n}

K : X ×X → R

Li[θ] = γ>r (i)θ,

where γr is the regressor and is defined in (4.5). Since K is a positive definite
kernel, this results in K ∈ Rn×n, which is a symmetric and positive definite kernel
matrix. As a result, there is a unique HK of real-valued functions over the domain
X with a finite number of kernel sections, i.e., the columns of K . Accordingly, any
gθ ∈HK can be written as a linear combination of the kernel sections:

gθ(·) =
n∑
i=1

ciK(i, ·), (4.18)

with ‖gθ‖2K = c>K c, where c = [c1 · · · cn]>. From (4.18), it can be easily seen that
θ = K c and ‖gθ‖2K = θ>K−1θ. Then, (4.15) becomes equivalent to the following
Regularized LS (ReLS) problem:

θ̂ = argmin
θ

‖YN −ΥNθ‖22 + γθ>K−1θ, (4.19)

and the solution θ̂ that represents the Regularized FIR (RFIR) can be obtained by
some algebraic manipulation:

θ̂ =
(
Υ>NΥN + γK−1)−1 Υ>NYN ,

=K Υ>N
(
ΥNK Υ>N + γIN

)−1
YN .

(4.20)

By noting that Li[Ki(·)] in (4.16) is simply K Υ>N and c = (ΥNK Υ>N + γIN)−1YN ,
where

K o = ΥNK Υ>N , (4.21)

a similar expression for θ̂ can be obtained using Theorem 4.1.

Connection with the Bayesian estimator of GP

A similar connection between the RKHS estimator (4.15) and the Bayesian estima-
tor of continuous-time GP, as shown in Section 3.5, can be established (Pillonetto
et al. 2014). As previously explained, such a connection provides a meaningful
probabilistic interpretation in a Bayesian framework, which gives an efficient way
to tune the unknown hyperparameters of the kernel function from data by maxi-
mizing the marginal likelihood. More specifically, based on the notation in (4.14),
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the data-generating system can be written as

y(t) = Lt[g] + e(t), (4.22)

where

A1 e(t) is a zero-mean Gaussian noise process with variance σ2
e , independent of

u.

A2 The impulse response g is modeled as a zero-mean GP on N with covariance
K and being independent of e(t).

Collect the noiseless outputs at time t = 1, . . . , N in a vector x =
[
L1[g] · · · LN [g]

]
,

which is a multivariate zero-mean Gaussian vector. As cov(xi, xj) = Li

[
Lj [K]

]
,

the covariance of x is Ko (4.17). From A1-A2, it can be concluded that g, YN are
jointly Gaussian and the posterior p(g(·) | YN ) is also Gaussian and its minimum
variance estimate coincides with (4.16). The above discussion can be summarized
in the following proposition, which is similar to Proposition 3.1.

Proposition 4.1 (Pillonetto et al. 2014) Consider (4.22) under A1-A2 with prior knowl-
edge reflected by the covariance functionK. The minimum variance estimate of g(·) given
the observations YN is ĝ(·) and is given by (4.15) with γ = σ2

e and with HK being the
RKHS associated with K.

As a result of such a connection, an estimate of the hyperparameters that parame-
terize the kernel function, i.e., β, is obtained by marginal likelihood optimization
as follows:

β̂ = argmax
β

logp(YN | β),

= argmax
β

−N2 log(2π)− 1
2Y
>
N

(
K o
β + σ2

eIN
)−1

YN −
1
2 log det(K o

β + σ2
eIN).

(4.23)

4.1.3 RKHSs of impulse responses

Stable RKHSs

In order to have a successful identification, the RKHS, which is used as a hypothe-
sis space for the estimation problem, needs to be appropriately designed. Having
the one-to-one correspondence between an RKHS HK and its reproducing ker-
nel K, a kernel function K can be designed such that it encodes all relevant prior
knowledge that will be automatically reflected on the resulting RKHS. The ker-
nels used in the machine learning community for nonlinear function estimation
include smoothness information, e.g., Gaussian and CS1 kernels, but cannot be

1See (Pillonetto et al. 2014, Section 10.4) for more details on spline kernels.
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applied directly for impulse response estimation as they do not include any sta-
bility constraint on the impulse response. Hence, the variance of the estimates is
expected to be significant as the hypothesis space is unnecessary large. To show
the role of the stability constraint in LTI system identification, consider the follow-
ing example. Let us pick a system from the data set S1D1 given in Section 4.2.5,
with the same identification setting, where the main goal is to reconstruct the im-
pulse response function from a set of noisy measurements. We adopt the estimator
(4.15), which boils down to (4.19) in case of RFIR estimation. The kernel matrix,
i.e., K , is constructed based on CS and Gaussian kernels. The hyperparameters
associated with these kernels are tuned with marginal likelihood maximization
(4.23). Figure 4.1 shows the impulse response reconstructions, where it can be
easily seen that both kernels do not perform well on the considered system. These
kernels result in many oscillations in the estimates as both of them do not include
information on the stability of the impulse response, i.e., it is inevitable decay to
zero. This can be further understood by looking at the resulting kernel matrix
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Figure 4.1: RFIR estimation with kernels that do not include a stability constraint.
The true impulse response is given in red and the estimated response is given in
blue. Left part: CS kernel. Right part: Gaussian kernel.

associated with these kernels. Figure 4.2 displays the scaled images of the kernel
matrix constructed from CS, left part, and Gaussian kernel, right part. Because of
the lack of information on impulse response stability, the diagonal elements of the
kernel matrix do not decay to zero. Indeed, in case of a CS kernel, these elements
increase and in case of a Gaussian kernel these elements have a steady state behav-
ior. Such a behavior is not what we should expect from a stable impulse response.
Moreover, the left part of Figure 4.3 shows the kernel sections associated with the
CS kernel, i.e., columns of the kernel matrix, which are not decaying to zero. It
has been discussed that the final estimate can be represented as a linear combi-
nation of these kernel sections, then the final estimate is also not going to decay
to zero. The right part of Figure 4.3 shows randomly generated realizations from
a GP with the CS kernel as its covariance, which are deviating from zero as time
progresses. Therefore, a different prior, i.e., kernel function, should be employed
that includes, not only information on smoothness, but also on BIBO-stability of
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Figure 4.2: Scaled image of the kernel matrix K constructed with: Left part: CS
kernel. Right part: Gaussian kernel. Note that the resulting image is anm×n grid
of pixels where m and n are the number of columns and rows of K , respectively.
Each element of K specifies the color for a pixel of the image according to the color
map shown on the right of each figure.
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Figure 4.3: Left part: kernel sections of the CS kernel Kxi(·) for xi = 0.1, . . . , 1.
Right part: realization from a GP with the CS kernel as its covariance.
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the to be estimated impulse response.

The necessary and sufficient condition for an LTI system F to be BIBO sta-
ble is that its impulse response g be in the Banach space R`1(N), see Definition
2.1. Therefore, in a system identification scenario, the impulse response should be
searched for in an RKHS contained in R`1(N). Such RKHSs are known as stable
RKHSs (Dinuzzo 2015; Pillonetto et al. 2014).

Definition 4.1 (Stable RKHSs) (Pillonetto et al. 2014) Let HK be the RKHS of real-
valued functions on the domain X = N, induced by a kernel K. Then, HK is said to be
a stable RKHS, and the associated K is called stable, if HK ⊂ R`1(N).

Given a kernel K, it is often impossible to check the condition in Definition 4.1, as
it is hard to understand which functions are contained in the associated RKHS. For
instance, only recently and by means of sophisticated mathematical argument, an
explicit characterization of the RKHS associated with the well-known Gaussian
kernel has been obtained (Steinwart et al. 2006).

Instead, constructing K to directly guarantee stability of HK is an easier task
to accomplish. A necessary, but not sufficient condition for stability of K or HK

is that all kernel sections should be in R`1(N), i.e., all Ki(·) ∈ R`1(N). Such a
condition is not sufficient because HK also contains all the Cauchy limits of lin-
ear combinations of kernel sections. For instance, the Gaussian kernel has stable
kernel sections; however, it is not a stable kernel.

Now, let us introduce the space `∞(N) of all bounded and real sequences de-
fined on N, i.e.,

`∞(N) = {h = {hi}∞i=1, such that ‖h‖∞ <∞} ,

‖h‖∞ = sup
i
|hi|.

A necessary and sufficient condition for K to be associated with a stable HK is
summarized in the following theorem.

Theorem 4.2 (RKHSs stability) (Chen and Ljung 2015c) Let HK be the RKHS in-
duced by K : N× N→ R. It holds that

HK ⊂ R`1(N)⇔
∞∑
i=1

∣∣∣∣∣∣
∞∑
j=1

u(j)K(i, j)

∣∣∣∣∣∣ <∞, ∀u ∈ `∞(N). (4.24)

Corollary 4.1 Let HK be the RKHS induced by K. Then,

HK ⊂ R`1(N)⇐
∞∑
i=1

∞∑
j=1
|K(i, j)| <∞. (4.25)

In addition, considering only nonnegative-valued kernels denoted by K+, i.e.,

K+(i, j) ≥ 0,∀i, j ∈ N,
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or diagonal kernels denoted by Kd, i.e.,

Kd(i, j) = 0,∀i 6= j,

condition (4.25) becomes also necessary:

HK ⊂ R`1(N)⇔
∞∑
i=1

∞∑
j=1

K+(i, j) <∞. (4.26)

and

HK ⊂ R`1(N)⇔
∞∑
i=1

∞∑
j=1

∣∣Kd(i, j)
∣∣ <∞. (4.27)

Theorem 4.2 and Corollary 4.1 allow for the assessment of the stability or instabil-
ity of an RKHS HK given its reproducing kernel K without the need to character-
ize HK itself. Next, we give an example of a kernel function, which is unstable,
i.e., the corresponding HK is not fully contained inR`1(N).

Example 4.1 (RKHS of Gaussian kernel is not stable) Consider a Gaussian kernel

K(i, j) = exp
(
−

(i− j)2

βw

)
.

Note that K is a nonnegative-valued kernel. Such a kernel includes smoothness information, but by utilizing
(4.26), it can be easily concluded that it is not a stable kernel and the resulting RKHS is not contained inR`1(N),
since

∞∑
i=1

∞∑
j=1

exp
(
−

(i− j)2

βw

)
=∞.

Next, we focus on stable kernel functions that are suitable for impulse response
estimation.

Kernel structures for impulse response estimation

For impulse response estimation, the kernel function K should reflect reasonable
assumptions about the impulse response. See Figure 4.4 for various dynamic re-
sponses, which represent a possible prior knowledge that we are aiming to en-
code via the kernel function. For example, if the system is exponentially stable,
the impulse response coefficients gi should decay exponentially, which can be ex-
pressed by a stable kernel, and if the impulse response is smooth, neighboring
values should have a positive correlation (Pillonetto et al. 2014). For this purpose,
it is useful to recall that the optimal kernel of the estimation problem (4.15) is given
by (Chen et al. 2012, Theorem 1):

Kopt(i, j) = gigj , (4.28)

where i, j ∈ N and g = {gi}∞i=1 is the true impulse response. The term “optimal”
means that such a kernel minimizes the MSE of the estimated impulse response.
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More specifically, let ĝ denote the estimated impulse response, K is an arbitrary
kernel function, then it holds that:

MSE(ĝ) based on K ≥ MSE(ĝ) based on Kopt.

Even if (4.28) is impossible to be used in practice since the true impulse response is
unknown, it provides a guideline to design suitable kernel functions for impulse
response estimation. For instance, let the kernel mimic the behavior of the opti-
mal kernel. Moreover, the prior knowledge of the true impulse response should
be utilized in the design of the kernel function. The left part of Figure 4.5 shows
a scaled image of the optimal kernel matrix, i.e., with K constructed with the ker-
nel given in (4.28). Such an image gives an idea how the behavior of the kernel
that describes the impulse response of a stable LTI system should look like. In the
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Figure 4.4: Common prior knowledge in impulse response estimation. Left part:
stable over-damped. Middle part: stable under-damped. Right part: multiple,
distinct time constants.

literature, many kernel structures have been introduced to embed various forms
of prior knowledge or taken assumptions on the behavior/distribution of the ex-
pected impulse responses. In the following discussion, we give an overview of
these kernel functions.

Diagonal kernel (DI) (Chen et al. 2012):

K(i, j) =
{
β1β

i
2, i = j;

0, otherwise;
, β1 ≥ 0, 0 ≤ β2 < 1, (4.29)

where β2 expresses the exponential decay rate. Note that the correlation between
the impulse response entries at different time instants is not encoded in such a
kernel.
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Stable Spline (SS) (Pillonetto and De Nicolao 2010):

K(i, j) =

β1
β2i

2
2

(
βj2 −

βi2
3

)
, i ≥ j;

β1
β2j

2
2

(
βi2 −

βj2
3

)
, i < j;

, β1 ≥ 0, 0 ≤ β2 < 1, (4.30)

where β2 expresses the exponential decay rate.

Diagonal Correlated (DC) (Chen et al. 2012):

K(i, j) = β1β
|i−j|
2 β

i+j
2

3 , β1 ≥ 0, −1 < β2 < 1, 0 ≤ β3 < 1, (4.31)

where β2 describes the correlation between impulse response entries at different
time instants and β3 accounts for the exponential decay rate.

Tuned Correlated (TC) (Chen et al. 2012):

K(i, j) = β1 min
(
βi2, β

j
2

)
, β1 ≥ 0, 0 ≤ β2 < 1, (4.32)

where such a kernel is a special case of the DC kernel obtained by substituting
β2 =

√
β3 in (4.31). It is also known as first order stable spline kernel (Pillonetto and

De Nicolao 2010).

By including the stability constraint into the kernel function, the hypothesis
space utilized in the estimation, i.e., the RKHS associated with the kernel, be-
comes a function space, where all elements are impulse responses that decay to
zero. For example, for the SS kernel (4.30), a scaled image of the kernel matrix
constructed with such a kernel is given in the right part of Figure 4.5, where it
can be easily seen that it behaves very similar to the optimal situation, i.e., the left
part of the same figure. Moreover, the left and right parts of Figure 4.6 show the
kernel sections and a randomly generated realization of a GP associated with the
SS kernel, respectively. By adopting the SS kernel for the example given in the
previous subsection, a better result is obtained due to the inclusion of the stability
constraint, see Figure 4.7, where the estimated impulse response is very close to
the true one without the undesired oscillations that have been observed in Figure
4.1 when unstable kernels have been employed. There are many other kernel
functions, e.g., the Rank-1 kernel known also as the OE kernel (Chen et al. 2013),
constructive state-space model induced kernels (Chen and Ljung 2014). Moreover,
in (Chen and Ljung 2015c,b; Chen and Ljung 2016), two different methods of de-
signing kernel functions suitable for impulse response estimation are presented
from a machine learning perspective and system theory perspective. It is worth
to mention that the above-mentioned kernels are considered to be single struc-
ture kernels, whereas multiple structure kernels have been introduced in (Chiuso
et al. 2014; Chen et al. 2014), that handle systems with multiple and distinct time
constants. Although, the above-mentioned kernels guarantee the stability of the
estimated impulse response, there are other interesting dynamic properties that
could be included besides stability, e.g., resonance behavior. In the following, we
present an advanced kernel structure that can, with a simple parameterization,
represent a wide range of dynamic properties in a systematic way.
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Figure 4.5: Scaled image of the kernel matrix constructed with: Left part: optimal
kernel, i.e., gg>. Right part: SS kernel as an example of a stable kernel. Note that
the resulting image is an m × n grid of pixels where m and n are the number of
columns and rows of the kernel matrix, respectively. Each element of the kernel
matrix specifies the color for a pixel of the image according to the color map shown
on the right of each figure.
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Figure 4.6: Left part: kernel sections of the SS kernel Kxi(·) for xi = 0.1, . . . , 1.
Right part: realization from a GP with the SS kernel as its covariance.
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Figure 4.7: RFIR estimation with an SS kernel that includes the stability constraint.
The true impulse response is given in red and the estimated is given in blue.

4.2 Bayesian identification with OBFs kernels

In this section, we give a systematic way to construct kernel functions for impulse
response estimation based on OBFs that are capable of describing a wide range of
dynamic properties and result in a well-designed RKHS and hence, improve the
accuracy of the estimates by achieving a better bias/variance trade-off compared
with existing kernels.

4.2.1 RKHS associated with OBFs in the time-domain

A fundamental result on RKHSs:

Proposition 4.2 (Unique kernel of an RKHS) (Aronszajn 1950) Let H be a sep-
arable2 Hilbert space of real-valued functions over X with orthonormal basis {φi}∞i=1.
Then,

H is an RKHS ⇔
∞∑
i=1
|φi(x)|2 <∞,∀x ∈X .

The unique kernel K that is associated with H is

K(x, x′) =
∞∑
i=1

φi(x)φi(x′). (4.33)

Consider R`2(N) and its standard orthonormal basis, see Example 2.2. Using
the above result, i.e., Proposition 4.2, it is immediate to conclude that R`2(N) is
an RKHS with a kernel given by the infinite-dimensional identity matrix, i.e.,
K(i, j) = δij . Interestingly, it has been discussed in Section 2.3.3 that the OBFs

2A Hilbert space is said to be separable if it has a basis with at most a countable number of elements.
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Ψ = {ψk(t)}∞k=1 constitute a complete orthonormal basis of R`2(N). Accordingly,
the simplest kernel that can be built using these OBFs is given by

KΨ(i, j) =
∞∑
k=1

ψk(i)ψk(j), (4.34)

which represents the formulation of the OBFs based kernel in time-domain and is
a reproducing kernel for the RKHS space spanned by Ψ, i.e.,R`2(N).

The OBFs, with all of their variants, i.e., Takenaka-Malmquist, GOBFs, La-
guerre and Kautz, are generated by a cascaded network of all-pass functions that
are completely determined, modulo the sign, by their generating poles, which
makes these basis a perfect candidate to represent the dynamic properties of LTI
systems via the generating poles of the OBFs. Embedding such a representation
capability into the regularization framework gives an attractive approach to be
investigated for fulfilling Subgoal 1. Indeed, regularization techniques offer an at-
tractive framework for estimation problems with a controlled bias/variance trade-
off and a systematic way to include prior knowledge via the kernel function. By
combining such an attractive framework with the OBFs based kernels that are
constructed from the OBFs generated by a set of poles, the prior knowledge of the
dynamic properties of the unknown systems can be encoded.

4.2.2 OBFs kernels based IIR estimation

In the following, we assess the usefulness of the OBFs based kernel introduced
in the previous subsection for estimating IIR models. More specifically, the pre-
sented class of kernels is assessed from two different points of view, i.e., system
theory and machine learning perspectives.

System theory perspective

Now, we assess the OBFs based kernels from a system theory perspective, in the
sense that we start from a system theoretic representation of LTI systems in terms
of OBFs expansion and combine that with the optimal kernel (4.28).

From (2.29) and using (4.28), it follows that the optimal kernel in terms of the
OBFs sequence Ψ = {ψk(t)}∞k=1 is given by:

KΨ(i, j) = g(i)g(j), (4.35)

=
∞∑
k=1

ckψk(i)
∞∑
l=1

clψl(j), (4.36)

=
∞∑
k=1

∞∑
l=1

ckψk(i)clψl(j). (4.37)

In the Bayesian setting, g is assumed to be a particular realization of a Gaussian
random process. This corresponds to the assumption that {ck}∞k=1 is a sequence
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of independent random variables with zero-mean and variance σ2
c(k), i.e., ck ∼

N (0, σ2
c(k)), then, by taking the expectation, we get

KΨ(i, j) = E

{ ∞∑
k=1

∞∑
l=1

ckclψk(i)ψl(j)
}

(4.38)

=
∞∑
k=1

σ2
c(k)ψk(i)ψk(j). (4.39)

It is well-known that the expansion coefficients {ck}∞k=1 satisfy
∑∞
k=1 |ck|2 < ∞,

i.e., {ck}∞k=1 ∈ R`2(N). Such a space is a rich space that contains the impulse
responses of possibly infinite-dimensional and time-varying systems. However,
we are interested only in FD-LTI systems with impulse responses belonging to
R`1(N), and hence the expansion coefficients must satisfy a more restrictive con-
dition

∑∞
k=1 |ck| < ∞. One possible way to impose such a behavior in the kernel

definition is to characterize the decay of the expansion coefficients by an exponen-
tial term. This will become more clear in the next subsection.

Machine learning perspective

In this section, we analyze the OBFs based kernel from a machine learning per-
spective. More specifically, we assess the suitability of the RKHSs constructed
from OBFs for impulse response estimation.

Given a sequence of OBFs Ψ = {ψk(·)}∞k=1, it is shown that Ψ span an RKHS
with the reproducing kernel given by (4.34). Since Ψ contains an orthonormal ba-
sis in R`2(N), from Proposition 4.2, it can be easily seen that KΨ(i, j) = δij . If
the system to be identified is stable, this kernel will perform poorly (this coincides
with the conclusion in (Chen and Ljung 2015a, Section V)): in fact, the optimal
structure (4.28) suggests that the diagonal elements of the kernel should decay to
zero, instead of being constant. In addition, the off-diagonal elements should be
different from zero. Moreover, the Bayesian interpretation of regularization, as
described, e.g., in (Pillonetto et al. 2014, subsection 4.3), also supports the same
conclusions from a Bayesian perspective. The estimator (4.15) can in fact be seen
as the minimum variance estimator of the impulse response when the latter, i.e.,
the impulse response, is a zero-mean Gaussian process, independent of the noise,
with covariance proportional to K. When (4.34) is adopted, g becomes propor-
tional to a stationary white noise. But the variability of a stable impulse response
is expected to decay to zero as time progresses. One problem related to (4.34) is
that it defines a kernel which is not stable according to Definition 4.1. Indeed, the
kernel defined by the OBFs Ψ, i.e., KΨ , leads to an RKHS as a hypothesis space
given byR`2(N). However,R`2(N) 6⊂ R`1(N), and hence the kernel is not stable.

In view of the above results from both machine learning and system theory
perspectives, to include the stability constraint, we consider the kernel construc-
tion

Ks
Ψ(i, j) = βα

∞∑
k=1

Dk (βd)ψk(i)ψk(j), (4.40)
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where Dk (βd) is a decay term that weighs the OBFs and converges to zero as
k →∞, βd is considered to be a hyperparameter that is responsible for magnitude
scaling of the basis {ψk}∞k=1 associated with (4.40). The decay term, i.e., Dk (βd),
with βd tuned by marginal likelihood optimization also acts as an automatic way
to select the number of significant basis functions that are needed to construct the
kernel. In absence of more sophisticated prior information, as in the case of many
practical scenarios, monotonically decreasing weights, e.g.,

Dk (βd) = k−βd , βd > 0, (4.41)

or
Dk (βd) = β−kd , βd > 1, (4.42)

are effective and able to well guard against ill-conditioning of the system iden-
tification problem. This is also supported from the view point of system the-
ory, where it is known that the decay rate of the expansion can be always upper
bounded by an exponential decay. However, depending on the available knowl-
edge, other parameters can be introduced in the decay term that describe more
complicated shapes for the weights. Similarly, when a prior information is avail-
able, this can support the choice of the basis functions. This fits in the framework
developed in this chapter, e.g., if the number of resonance peaks is known, we
can use such information to decide the number of complex pairs/real poles that
should be considered for GOBFs generating Ks

Ψ . The other hyperparameters, be-
sides βd, are the scale factor βα and the poles used to generate the sequence ψk(·)
collected in a vector βp.

The following proposition provides guarantees on the stability of the kernel
constructed using the more general Takenaka-Malmquist OBFs. Note that, we
prove the stability under a general class of OBFs and hence the results hold for
the special cases, e.g., GOBFs, Laguerre and Kautz basis.

Proposition 4.3 (Stability of the OBFs based kernels) Consider the kernel (4.40),
which is built using the general OBFs basis, with all generating poles assumed to be
uniformly away from the unit circle, i.e., ∃ς > 0 s.t. λi ≤ ς < 1 for all i. Then, the kernel
is stable if Dk (βd) = k−βd and βd > 3 or Dk (βd) = β−kd and βd > 1.

Proof: See Appendix A.2. �

This allows to introduce an identification scheme for regularized impulse response
estimation with the OBFs based kernel (4.40) as summarized in Algorithm 2.

4.2.3 Regularized OBFs expansion estimation

Overview

Instead of using OBFs for kernel construction, in Chen and Ljung (2015a), a regu-
larization based estimation of the OBFs expansion (ROBFs) has been investigated.
More specifically, consider the data-generating system (4.1), and let the transfer
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Algorithm 2 Regularized IIR estimation with OBFs based kernel (4.40).

Require: A data record DN = {u(t), y(t)}Nt=1.
1: Estimate the noise variance σ2

e with a low bias and high order ARX or FIR
model. The estimate is denoted as σ̂2

e .
2: Hyperparameter tuning: Solve (4.23) to get the empirical Bayes estimate β̂ for
β =

[
βα βd β

>
p
]>.

3: Function estimation: Impulse response estimation: with β = β̂ and γ = σ̂e
2

compute the estimate of the impulse response via (4.20).
4: Return: Estimated impulse response θ̂.

operator G0(q) be represented by a series expansion representation in terms of
the OBFs {ψi(t)}∞i=1 or equivalently, the frequency domain representation related
operator form {ψ̆i(q)}∞i=1, see Section 2.4.3. Furthermore, by considering the first
nψ terms in the expansion, i.e., {ψi(t)}

nψ
i=1, (4.1) can be written as

y(t) =
nψ∑
i=1

ci(ψi ~ u)(t) + v(t) (4.43)

=
nψ∑
i=1

ciψ̆i(q)u(t) + v(t). (4.44)

The model structure given by (4.43), for a given basis set, renders the identifica-
tion problem a linear regression problem for estimating the expansion coefficients
{ci}

nψ
i=1, see Section 2.4.4 for more details. However, by extending the ReLS ap-

proach for FIR, see (4.19), to the OBFs model structure, we gain the following:

• The generating poles of the OBFs utilized in the model structure can be
treated as a hyperparameters , which can be estimated by the empirical
Bayes method, i.e., maximizing the marginal likelihood.

• A bias/variance trade-off can be demonstrated, which is exploited to reduce
the MSE of the final model estimate.

Now, we estimate the expansion coefficients c =
[
c1 · · · cnψ

]> by minimizing the
following ReLS criterion:

ĉ = argmin
c∈Rnψ

‖YN −ΥN (βp)c‖22 + γc>K−1
c (βc)c,

= argmin
c∈Rnψ

N∑
t=1

(
y(t)−

nψ∑
k=1

ck(ψk ~ u)(t)
)2

+ γc>K−1
c (βc)c, (4.45)

where K c is the regularization matrix on the coefficients {ci}
nψ
i=1 and ΥN is the

regression matrix which can be constructed as follows:

γ>r (t) =
[
ψ̆1(q)u(t) · · · ψ̆nψ (q)u(t)

]
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ΥN = [γr(1) · · · γr(N)]> .

Now, let us discuss the design of the suitable kernel structure that encodes
the prior knowledge about the expansion coefficients. Actually, the behavior of
the expansion coefficients depends largely on the utilized basis functions. For
instance, if we consider a Laguerre basis, it has been suggested in Wahlberg (1991)
to assume that c ∈ R`1(N), i.e.,

∞∑
i=1
|ci| <∞.

In this case, the expansion coefficients can be regarded as the impulse response of
a stable LTI system and accordingly we can use any of the kernel structures pre-
sented in Section 4.1.3 for regularized FIR estimation to regularize the expansion
coefficients. For sophisticated basis, e.g., general Takenaka-Malmquist basis, the
behavior of the expansion coefficients will accordingly be more involved. How-
ever, upon the availability of more prior knowledge, this can be embedded in
the kernel structure. For example, as suggested in Chen and Ljung (2015a), an
adapted version of the DC kernel can be used to represent the slower conver-
gence rate in the Laguerre model when the dominant poles are very close to the
unit circle:

Kc(i, j) = β1β
|i−j|
2 D(i+ j), (4.46)

where D(·) is a nonnegative function that decays slower than the exponential func-
tion of the DC kernel in (4.31). Note that, we denote the regularization matrix by
K c(βc) to indicate that the kernel function depends on the hyperparameter vector
βc, which describes the behavior of the expansion coefficients, e.g., β1, β2 in (4.46).
In such cases and in the absence of detailed prior knowledge, we can still use the
kernel recommended as before.

In (4.45), we denote the regression matrix as ΥN (βp) to indicate that it depends
on βp, which is a vector containing the unknown generating poles. These poles
along with the hyperparameter that controls the decay rate of the expansion coef-
ficients, i.e., βc, can be estimated by maximizing the marginal likelihood.

Connection to regularized FIR estimation with unstable OBFs kernels

It has been shown in (Chen and Ljung 2015a, Section V) that the regularized FIR
estimation with the OBFs based kernelKΨ (4.34), is a special ill-defined case of the
ROBFs estimation problem (4.45) pointing out that using OBFs in defining a kernel
function in the time-domain in a naive way is not advisable. More specifically,
consider (4.15), which can be written in case of FIR as

ĝ = argmin
g∈H

N∑
i=1

(yi − (g~ u)(ti))2 + γ‖g‖2K . (4.47)
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Furthermore, by utilizing the OBFs kernel KΨ in (4.34), we can define the corre-
sponding RKHS HKΨ as:

HKΨ = Span{ψ1, ψ2, . . . , ψnψ}

= {g | g(t) =
nψ∑
k=1

ckψk(t), ck ∈ R}, (4.48)

with

‖g‖2K =
nψ∑
i=1

c2i .

Now, substituting ‖g‖2K =
∑nψ
i=1 c

2
i and g(t) =

∑nψ
i=1 ciψi(t) into (4.47), will

turn the estimation problem to estimate the expansion coefficients c instead of g

ĉ = argmin
c∈Rnψ

N∑
t=1

(
y(t)−

nψ∑
k=1

ck(ψk ~ u)(t)
)2

+ γc>Inψc, (4.49)

where the regularizer c>c = ‖c‖22 corresponds to a Ridge regression of c. How-
ever, the resulting Ridge regression indicates that the regularization matrix is the
identity matrix, which in our case does not reflect the prior knowledge that the
expansion coefficients should be absolutely summable and also this will not guar-
antee the stability of the resulting impulse response estimate. This is completely
in agreement with the conclusion that has been drawn in Section 4.2.1 that the
kernel defined in (4.48) will not work for impulse response estimation as it does
not encode the stability constraints.

Connection to regularized FIR estimation with stable OBFs kernels

In the following, the connection of the stable OBFs based kernel Ks
Ψ defined in

(4.40) with the ROBFs approach is shown. By considering an nψ−truncated kernel
representation3 of Ks

Ψ , i.e., Ks
Ψ(i, j) = βα

∑nψ
k=1 Dk (βd)ψk(i)ψk(j), and letting

Dk (βd) = dk for k = 1, . . . , nψ , the associated RKHS HKs
Ψ

can be written as

HKs
Ψ

= Span{ψ1, ψ2, . . . , ψnψ}

= {g | g(t) =
nψ∑
k=1

ckψk(t), ck ∈ R}, (4.50)

with
ck = 〈g, ψ〉Ks

Ψ
k

,

3If we consider that ĝ to be the estimate with the infinite kernel representation, i.e., nψ = ∞ and
ĝnψ is the estimate with the nψ−truncated representation of the kernel, then, the following result
holds limnψ→∞ ‖ĝ− ĝnψ‖Ks

Ψ
= 0, see (Pillonetto and Bell 2007, Theorem 7).
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and

‖g‖2Ks
Ψ

=
nψ∑
k=1

c2k/dk = c>K−1
c c

where c = [c1 · · · cnψ ]> and [K c]ij = djδij .

As g(·) =
∑nψ
k=1 ckψk(·) and ‖g‖2Ks

Ψ
= c>K−1

c c, (4.47) can be written as

ĉ = argmin
c∈Rnψ

N∑
t=1

(
y(t)−

nψ∑
k=1

ck(ψk ~ u)(t)
)2

+ γc>K−1
c c, (4.51)

This gives that (4.51) is identical with (4.45). Although they are identical from
the optimization point of view, conceptually they are different. The approach in
Chen and Ljung (2015a) utilizes the Bayesian approach to regularize the estima-
tion of the expansion coefficients. On the other hand, the approach presented in
this chapter uses the OBFs to construct a kernel function that results in a stable
RKHS directly in the time-domain, which can be used for impulse response esti-
mation and provides a better understanding of that space. Both approaches con-
sider the generating poles as hyperparameters and tune them with the marginal
likelihood maximization.

4.2.4 Hyperparameter tuning and computational complexity

In case of the OBFs based kernel defined in (4.40), the hyperparameters that are
needed to be estimated from data are the scaling parameter βα, the decay param-
eter βd and the generating poles. Note that in case of the Laguerre-based kernel,
only one real pole, i.e., λ in (2.24), is needed to generate the full sequence of ba-
sis. For the Kautz-based kernel, two conjugate complex poles defined by b and
c in (2.23) are required to generate that sequence. Hence, the estimation of these
hyperparameters following the empirical Bayes approach can be accomplished by
solving the optimization problem (4.23).

In regularized impulse response estimation, the overall algorithm mainly con-
sists of two steps (Chen and Ljung 2013):

1. Hyperparameters estimation: This step involves the minimization of a cost
function (4.23) for which a single evaluation for the cost function is O(N3).

2. Impulse response estimation: The computational complexity of this step is
O(N3).

In (Carli et al. 2012), a new computational strategy has been proposed which may
reduce significantly the computational load and extend the practical applicability
of this methodology to large-scale scenarios. The proposed algorithm (Carli et al.
2012, Algorithm 2) is mainly developed for SS kernels and exploits the spectral de-
composition of these kernels (Pillonetto and De Nicolao 2010). With this approach,
the computational complexity now scales asO(n3

ψ), where nψ is the number of the
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eigenfunctions. Moreover, it can effectively compute the marginal likelihood with
O(N2nψ) for a single evaluation of the cost, see (Carli et al. 2012, Table 1). This
algorithm is directly applicable for kernels that have a spectral decomposition,
like the OBFs based kernel. Moreover, the effectiveness of this algorithm depends
on the impulse response to be estimated, which is not known a priori, and if it
can be approximated with a few number of eigenfunctions (Carli et al. 2012, Page
5). This motivates also the use of OBFs as eigenfunctions, offering a wide range
of basis selection which if properly chosen, a few number of basis is needed to
get a high approximation accuracy. In Kondo et al. (2017), a new hyperparame-
ters estimation algorithm is presented for the regularized least squares problem
in the empirical Bayesian approach arising from FIR model identification, which
is purposed for OBFs based kernel. Such an algorithm consists of two steps. More
specifically, first divide the decision variables into two groups, namely the vari-
ables associated with the decay term and the generating poles of the utilized OBFs.
Then, alternately minimizing with respect to each group. It is shown that difference
of convex functions programming is effectively applicable in the algorithm because
the search space is shown to be bounded.

4.2.5 Numerical simulation

In this section, the performance of the presented OBFs based kernels in the con-
sidered Bayesian identification setting is assessed on Monte Carlo (MC) based sim-
ulation studies using randomly generated discrete-time LTI systems.

Simulation studies

By using the setting of (4.1) as the data-generating system, five simulation studies
have been accomplished for the following scenarios:

1. S1D1: fast systems, DN with N = 500, Signal-to-Noise Ratio (SNR)=10dB.

2. S1D2: fast systems, DN with N = 375, SNR=1dB.

3. S2D1: slow systems, DN with N = 500, SNR=10dB.

4. S2D2: slow systems, DN with N = 375, SNR=1dB.

5. S3: oscillatory systems, DN with N = 400, SNR=10dB.

Each Scenario 1) to 4) corresponds to 100 randomly generated (by the drssMatlab
function) 30-th order discrete-time LTI systems for G0. The fast systems have all
poles inside 0.95J and the slow systems have at least one pole in the ring J−0.95J,
i.e., slow dominant poles. These systems are used to generate data sets for a white
u, with u ∼ N (0, 1) and v being additive white Gaussian noise. The variance of v
is set such that the SNR = 1 or 10dB for various Monte Carlo experiments, where
SNR is defined as

10 log10

(∑N
k=1 y̆

2(k)∑N
k=1 v

2(k)

)
, (4.52)
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where y̆(k) denotes the noise-free system output, i.e., y̆(k) = G0(q)u(k). Whereas,
Scenario 5) has been generated as reported in (Chiuso et al. 2014, Section VI), but
with only one dominant complex conjugate pole pair.

Identification setting

In all of the five scenarios, we estimate FIR models, i.e., the n−truncated impulse
response of (4.2) or equivalently θ in (4.19), with n = 125 and with the following
estimators:

1. RFIR-TC: regularized impulse response estimation, where the impulse re-
sponse coefficients are estimated by solving (4.15) and regularized with the
TC kernel (4.32).

2. RFIR-OBFs-L, -K or -G: regularized impulse response estimation, where the
impulse response coefficients are estimated by solving (4.15) and regular-
ized with the OBFs based kernel (4.40) constructed with three different classes
of basis functions; Laguerre with one real pole, Kautz with one complex con-
jugate pair or GOBFs with two real poles where the generating inner func-
tion is a 2nd order one, respectively.

3. ROBFs-L, -K or -G: regularized OBFs expansion estimation, where the ex-
pansion coefficients are estimated by solving (4.45) and regularized with the
diagonal kernel (4.29), i.e., DI kernel, with three different classes of basis
functions used in the expansion; Laguerre with one real pole, Kautz with
one complex conjugate pair or GOBFs with two real poles, respectively.

Furthermore, two different scenarios are considered for the number of basis func-
tions to construct the OBFs based kernel and the OBFs model structure, i.e., 40
basis and 100 basis. This is essential to show the effectiveness of the presented ap-
proach to control the flexibility offered by employing large number of basis. The
performance index that is used to measure the quality of the impulse response
estimation with different estimators is BFR of the estimated impulse response ĝk

BFR = 100%.
(

1−

√∑125
k=1 |gk − ĝk|2∑125
k=1 |gk − ḡ|2

)
, ḡ = 1

125

125∑
k=1

gk, (4.53)

where, {gk} are the true coefficients values. The hyperparameters have been es-
timated by solving (4.23). Note that, the approach proposed in Chen and Ljung
(2013), i.e., QR factorization, is employed in this example to solve the optimiza-
tion problem to tune the unknown hyperparameters and to estimate the unknown
impulse response.

Identification results

The average model fits over the considered five data sets estimated with TC ker-
nel are reported in Table 4.1, whereas the average model fits in case of (RFIR-
OBFs)/ROBFs-L, (RFIR-OBFs)/ROBFs-K and (RFIR-OBFs)/ROBFs-G are reported
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in Tables 4.2, 4.3 and 4.4, respectively. Moreover, for each case, the results are
given with both 40 basis and 100 basis. The highest average model fit over the
RFIR-OBFs alternatives and the ROBFs alternatives are highlighted in bold. It is
worth to mention that in case of RFIR-OBFs estimators both decay terms, i.e., (4.41)
and (4.42), are implemented and the one that gives the highest fit is shown in the
results as they performed the same on average. For illustration, the distributions

Table 4.1: Average of the BFR of the estimated FIR models with TC kernel.
RFIR-TC S1D1 S1D2 S2D1 S2D2 S3

90.82 77.25 84.08 63.61 86.01

Table 4.2: Average of the BFR of the estimated FIR models with Laguerre basis.
RFIR-OBFs-L S1D1 S1D2 S2D1 S2D2 S3
40 basis 91.85 78.97 85.71 67.88 85.31
100 basis 91.90 79.20 87.86 68.88 87.67
ROBFs-L S1D1 S1D2 S2D1 S2D2 S3
40 basis 91.90 78.92 85.70 69.28 83.41
100 basis 91.90 79.18 88.13 69.73 88.93

Table 4.3: Average of the BFR of the estimated FIR models with Kautz basis.
RFIR-OBFs-K S1D1 S1D2 S2D1 S2D2 S3
40 basis 91.91 79.08 87.29 70.35 93.40
100 basis 91.92 78.99 88.44 70.83 93.70
ROBFs-K S1D1 S1D2 S2D1 S2D2 S3
40 basis 91.89 78.64 87.50 70.52 93.72
100 basis 91.98 78.93 88.74 71.33 93.64

of the model fits over the five data sets with TC and the estimates with RFIR-OBFs,
ROBFs, which are highlighted in bold, are shown by boxplots in Fig. 4.8 to 4.10.

Discussion

Next, we give some insights that can be obtained from the results.

1. In general, RFIR-OBFs with all its alternatives perform better than RFIR-TC,
because RFIR-OBFs estimators employ kernels that inherently describe dy-
namic properties, e.g., resonance behavior, damping, etc., via the generating
poles of the OBFs, rather than only focusing on smoothness and stability.

2. For the resonating system, i.e., S3: RFIR-OBFs-L/ROBFs-L have difficulties
to deal with such systems, which is well-known that for a system with res-
onance behavior, a long Laguerre expansion is needed to get good accuracy.
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Table 4.4: Average of the BFR of the estimated FIR models with GOBFs basis.
RFIR-OBFs-G S1D1 S1D2 S2D1 S2D2 S3
40 basis 92.07 79.54 87.74 69.82 83.53
100 basis 92.21 79.52 89.26 71.10 88.76
ROBFs-G S1D1 S1D2 S2D1 S2D2 S3
40 basis 92.18 79.27 87.37 71.12 83.40
100 basis 92.31 79.18 89.42 72.38 89.20

TC RFIR-G ROBFs-G

85

90

95

+3

Estimator

BF
R

%

(a) S1D1

TC RFIR-G ROBFs-G

60

80

+1 +1

Estimator

BF
R

%

(b) S1D2

Figure 4.8: Boxplot for model fits over S1D1, S1D2. The shown estimators are
those highlighted in bold in the tables. Note that TC and RFIR-G denote RFIR-TC
and RFIR-OBFs-G, respectively.
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Figure 4.9: Boxplot for model fits over S2D1, S2D2. The shown estimators are
those highlighted in bold in the tables. Note that TC and RFIR-G denote RFIR-TC
and RFIR-OBFs-G, respectively.
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Figure 4.10: Boxplot for models fit over S3. The shown estimators are those high-
lighted in bold in the tables. Note that TC and RFIR-K denote RFIR-TC and RFIR-
OBFs-K, respectively.

This can be easily seen from the poor performance in case of 40 basis com-
pared with TC kernel. However, when increasing the number of basis to
100, the results improve a lot due to the employed long expansion and on
top of that the regularization that reduces the variance.

3. In case of the resonance behaviour in systems in S3, Kautz basis perform
significantly better compared to other estimators. This is due to the fact
that the Kautz basis is generated by two repeated conjugate complex poles
that are tuned by marginal likelihood optimization, which is proven to be a
numerically robust approach to accomplish this.

4. Due to the regularization acting on the estimation problem, in most of the
cases we gain from increasing the number of basis functions, which is not the
case in classical identification due to the increased variance resulting from
increasing the number of the expansion coefficients.

5. For slow systems, i.e., S2D1 and S2D2: RFIR-OBFs estimators show a signifi-
cant improvement over the TC kernel, especially RFIR-OBFs-G, which gives
the best performance for the first four data sets, i.e., S1D1, . . ., S2D2. This
is due to the fact that, if the basis functions are properly chosen, the OBFs
offer a more compact model structure which results in a better RKHS as a
hypothesis space.

6. The results of RFIR-OBFs and ROBFs are pretty close to each other due to the
conceptual equivalence provided in Section 4.2.3. Note that the difference in
the results is due to numerical issues, i.e., in case of RFIR-OBFs we directly
estimate a 125 length impulse response, whereas in case of ROBFs we only
estimate as many expansion coefficients as the number of basis functions
and then reconstruct a 125 length impulse response of the estimated OBFs
model.
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4.3 Bayesian frequency domain identification with OBFs
based kernels

In this section, we look at the problem of estimating the FRF of a stable LTI system
F , i.e., G0(ejω), directly in the frequency-domain including the handling of the
transient effect within the Bayesian setting. To achieve this, we will also use the
formulation of the presented OBFs based kernels in the frequency-domain.

4.3.1 Problem statement

Consider a SISO DT-FD-LTI stable data-generating system, which is given in (4.1)
with its impulse response denoted by g = {g(k)}∞k=1. Assume that, we measure
y(t) at t = 0, 1, . . . , N − 1, i.e., DN = {u(t), y(t)}N−1

t=0 . Denote by Ω = ejω the
frequency variable for ω ∈ R, then Ωk for k ∈ Z is defined as

Ωk = ejωk = e
j2πk
N . (4.54)

It is worth to mention that for k ∈ Z, Ωk corresponds to the k-th bin of an N -point
DFT, which is defined below.

Definition 4.2 (N -point DFT) The N -point DFT, at frequency bin k, of a sampled
signal xs(τ), τ = 0, 1, . . . , N − 1 is given by

Xs(k) = 1√
N

N−1∑
τ=0

xs(τ)e
−2jπkτ
N , k ∈ Z. (4.55)

Accordingly, denote Us(k), Ys(k), Vs(k) theN -point DFT at frequency bin k of u(t),
y(t), v(t), respectively.

In order to get the frequency-domain equivalent of (4.1), we first introduce the
following remark.

Remark 4.2 For a discrete-time, windowed signal u(t), i.e., u(t) = 0 for t < 0 and t ≥
N , the Discrete-Time Fourier Transform (DTFT)Us(ejωk) = 1√

N

∑N−1
t=0 u(t)e−jωkt, k ∈

{0, . . . , N − 1}, is equal to its N -point DFT.

Moreover, the DTFT of the impulse response g gives the FRF G(Ω), i.e., G(Ω) =
F{g(t)}. Now, the frequency-domain representation of (4.1) is

Ys(k) = G(Ωk)Us(k) + T(Ωk)︸ ︷︷ ︸
Ys0(k)

+ Vs(k), (4.56)

where the spectrum Ys0(k) is the measurement noise-free output and T(Ωk) is the
transient, which depends on the difference u(t) − u(t + N) for t < 0 and on the
impulse response of the system (Lataire and Chen 2016, Lemma 1).
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Given the exact input and measured output N−point DFT spectra Us(k) and
Ys(k), we are aiming at estimating G(Ω) and T(Ω).

4.3.2 Bayesian frequency-domain identification

In the Bayesian approach to system identification within the GPR framework, the
unknown function to be estimated is assumed to be a realisation of a zero-mean
GP with a certain covariance (kernel) function that encodes our priori knowledge
about it. Given observed data of joint Gaussian processes and a prior mean and
covariance, the goal is to obtain the a posteriori mean and covariance, which can
be used for prediction of the unknown function at arbitrary input values.

For the LTI system (4.56), it holds true that the FRF takes both real (at 0 Hz
and at the Nyquist frequency) and complex values. As a result, it is not possible
to model it as a real or as a complex GP. Hence, both the FRF and the transient
have to be defined as a Real/Complex GP (RCGP) (Lataire and Chen 2016, Section
2). More specifically, a RCGP η(k) is defined as

η(k) ∼ RCGP(m ,Kcov,Krel) | KR, (4.57)

where m ,Kcov,Krel are the mean, covariance, and relation functions, respectively,
and KR is a set of indices that indicates where η(k) is real, i.e., KR = {0,±N/2,
±2(N/2), . . .}. Following the Bayesian approach within the GPR framework, the
FRF G(Ωk) and the transient T(Ωk) are assumed to be independent of each other
and are assumed to be RCGPs over k ∈ R:

G(Ωk) ∼ RCGP(0, βGKcov, βGKrel) | KR, (4.58)

T(Ωk) ∼ RCGP(0, βTKcov, βTKrel) | KR, (4.59)

where βG ≥ 0, βT ≥ 0, Kcov,Krel are well-defined covariance and relation func-
tions, respectively. Once Kcov,Krel are defined, the Maximum a Posteriori (MAP)
estimates Ĝ and T̂ of the FRF and the transient, respectively, can be directly com-
puted (Lataire and Chen 2016). Such an estimator is denoted in the following by
GPTF.

4.3.3 Kernel functions in the frequency-domain

A natural way to construct the kernel function for FRF estimation is to utilize
the duality between the FRF and impulse response function (Schoukens et al.
2004), i.e., G(ejω) =

∑∞
τ=0 g(τ)e−jωτ , and the linearity of the Fourier transform,

to derive the corresponding covariance and relation functions in the frequency-
domain. More specifically, if the impulse response function g is assumed to be
a realization of a zero-mean GP, as has been introduced in the previous section,
with covariance cov(g(i),g(j)) = βGK(i, j), i, j = 0, 1, . . ., then, G(ejω) is a RCGP
with mean function

E{G(ejω)} = F
{
E{g(t)}

}
= 0, (4.60)
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and covariance and relation functions (k, l ∈ R):

βGKcov(ejωk , ejωl) = E{G(ejωk)G∗(ejωl)}, (4.61)

βGKrel(ejωk , ejωl) = E{G(ejωk)G(ejωl)} (4.62)

= βGKcov(ejωk , e−jωl), (4.63)

where

Kcov(ejωk , ejωl) =
∞∑
i=0

∞∑
j=0

K(i, j)e−jωkiejωlj . (4.64)

In Lataire and Chen (2016), the authors make use of such an approach to define
kernel functions used in the time-domain based literature for FRF estimation, e.g.,
DC and SS kernels, see the previous section for more details. For the sake of space,
the formulation of these kernels in the frequency domain can be found in (Lataire
and Chen 2016, Equations 55,56). Furthermore, it has been proven that these ker-
nels guarantee stability of the resulting model estimates. A sufficient condition
on the kernel function to guarantee the stability of the estimated FRF is to satisfy
the condition in (Lataire and Chen 2016, Property 7) or equivalently, the corre-
sponding impulse response of the estimated FRF must be absolutely summable,
see Proposition 2.1.

Remark 4.3 Regarding the kernel function for the transient T(Ω), it has been shown in
(Lataire and Chen 2016, Section 5.3) that a computational convenient way is to assume
G(Ω) and T(Ω) have the same kind of covariance function, but with different scaling
hyperparameters βG and βT, respectively.

The aforementioned kernels can describe stability and smoothness of the esti-
mated FRF. However, as recommended in Lataire and Chen (2016), kernels that
are able to describe other dynamic properties would be beneficial in the frequency-
domain identification, e.g., resonance behavior, damping, etc., but keeping a sim-
ple structure of the kernel function. In Section 4.2, we have introduced a class
of kernels for regularized impulse response estimation and it has been shown
that they correspond to a systematic construction of efficient kernels that are able
to describe a wide range of dynamic properties with simple parameterization.
Fortunately, the OBFs based kernels introduced in Section 4.2 have a direct rep-
resentation in the frequency-domain. Next, we show how to make use of the
frequency-domain formulation of the OBFs based kernel to estimate the FRF and
the transient directly in the frequency-domain.

4.3.4 OBFs based kernels in the frequency-domain

It is well-known that the space spanned by the OBFs Ψ̆, i.e., RH 2 (E), is an RKHS
(Ninness et al. 1999) with the following reproducing kernel

Kcov(ejωk , ejωl) =
∞∑
i=0

ψ̆i(ejωk)ψ̆∗i (ejωl), (4.65)
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and with the following well-defined inner product

〈f1, f2〉RH 2 = 1
2π

∫ π

−π
f1(ejω)f∗2 (ejω)dω, (4.66)

for any f1, f2 ∈ RH 2 (E).

Now, let us look into the details of the stability of the estimated FRF based
on the OBFs based kernel in (4.65). Similarly to the reasoning presented in Sec-
tion 4.1.2, the space spanned by the OBFs, which is used to construct the kernel
and used as a hypothesis space for the estimation problem should be restricted
to a subset of RH 2 (E), i.e., RH 2− (E). Because when the space spanned by
the OBFs is utilized, the resulting estimate will be in RH 2 (E), which means that
the impulse response function corresponding to the estimated FRF will belong to
R`2(N). Accordingly the stability condition that the impulse response should be
absolutely summable, i.e., ĝ ∈ R`1(N), is not satisfied asR`2(N) 6⊂ R`1(N).

In order to guarantee the stability of the estimated FRF and at the same time
tackle the problem of determining the right number of basis functions, similarly,
as has been done in the time-domain, we include a decay term that weighs the
OBFs

Kcov(ejωk , ejωl) =
∞∑
i=0

Di (βd) ψ̆i(ejωk)ψ̆∗i (ejωl), (4.67)

where the decay term Di (βd) → 0 as i → ∞ and βd is considered to be a hyper-
parameter that determines the decay rate of the expansion in (4.67). The decay
term, i.e., Di (βd), with βd tuned by marginal likelihood optimization acts as an
automatic way to select the number of significant basis functions that is needed to
construct the kernel. Possible choices for monotonically decreasing weights are

Di (βd) = i−βd , βd ≥ 0, (4.68)

Di (βd) = βid, 0 ≤ βd < 1, (4.69)

Note that the relation function Krel can be constructed accordingly via (4.67)
and (4.61)-(4.62).

4.3.5 Hyperparameters tuning

The kernel function defined above, i.e., the OBFs based kernel (4.67), depends on
some unknown hyperparameters that need to be tuned from the observed data.
These hyperparameters are the scaling parameters βG and βT, the noise variance
σ2

e , the parameter βd that determines the decay rate of the expansion and a vector
βp of the generating poles of the OBFs. Denote by β the vector of the hyperpa-
rameters, i.e., β = [ βG βT σ2

e βd β>p ]>. One popular approach to tune β
within the Bayesian framework is by maximising the log marginal likelihood, i.e.,
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logp(Ys(K | β)) of the output spectrum (Rasmussen and Williams 2006)

log (Ys(K | β)) = −1
2Ys(K)HΓ−1

Ys
(β)Ys(K)

− 1
2 log |ΓYs(θ)| −

nr

2 log 2π − nc log π, (4.70)

where K = {k1, k2, . . . , kn} ⊂ {0, . . . , N/2} is the set DFT-frequency indices that
lie in the frequency band of interest, ΓYs is the augmented covariance matrix
which can be constructed from the covariance and relation functions, i.e., Kcov
and Krel (4.67) and (4.61)-(4.62), see (Lataire and Chen 2016, Equation 36) for con-
structing ΓYs , nr is the number of frequencies where the FRF has real values and
nc is the number of frequencies where the FRF has complex values.

4.3.6 Simulation studies

In this section, the presented OBFs based kernel function, formulated directly in
the frequency domain, is tested and compared to the existing kernels, e.g., the
DC kernel, for FRF estimation. A challenging system is considered to show the
capability of the presented kernel to model a wide range of dynamic properties,
specifically resonance behavior, with a simple kernel structure.

Considered system

We consider a randomly generated 20-th order, LTI and discrete-time system G
generated by the drss Matlab function. The sampling period Ts is 1 s. We make
sure that there are two dominant complex conjugate pole pairs. These dominant
poles are located at 0.95 ± j0.25,−0.17 ± j0.89, see Figure 4.11 for the impulse
response and the pole/zero plot of the generated system.

Identification settings

MC simulations of 100 runs are performed, where at each run a new realisation
of the input u(t) and the noise v(t) are utilised according to (4.1). The considered
system is used to generate a data set of length N = 512 for each MC run using a
zero-mean white, Gaussian and periodic input u and an additive white Gaussian
noise v. The variance of v is chosen such that the SNR corresponding to two
estimation scenarios is 10dB or 40dB.

The considered estimators are:

• GPTF with DC kernel;

• GPTF with OBFs based kernel, specifically, with GOBFs based kernel where
the poles of the inner function Hb are {λ1, λ

∗
1, λ2, λ

∗
2}, which are considered

as hyperparameters;
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Figure 4.11: The impulse response and pole/zero plot of the considered system.

• Parametric model identified with the Identification Toolbox of Matlab (2016a),
more specifically, an OE model with the true order of the system, i.e., using
the command oe(20,20). We will call this estimator as an Oracle estima-
tor, in the sense that it knows the true model structure and order.

For each MC run, the hyperparameters of the GPTF estimators, for both DC and
OBFs kernels, are tuned by maximising the marginal likelihood (4.70). The esti-
mation is performed on a limited frequency band, i.e., from ω = 0.1 rad/s to ω = 3
rad/s. For the GPTF estimator, 241 frequency domain samples in the mentioned
range were used, whereas the OE model was estimated based on the whole data
record.

Results and discussion

The performance measure that is used to determine the quality of the estimated
FRF with different estimators is the averaged MSE over all frequencies in the band
of interest, i.e.,

MSE = 1
100

100∑
i=1

(
1
N

N∑
k=1
|Ĝi(Ωk)−G(Ωk)|2

)
, (4.71)

where Ĝi is the estimated FRF at the MC run i, which is calculated on a more
dense frequency grid, i.e., 966 frequencies, but within the same frequency band as
the training data set.

The averaged MSE for the estimates over all the frequencies in the considered
frequency band is summarized in Table 4.5. It can be seen from the table that



106 Chapter 4 Bayesian Identification of LTI systems: An OBFs approach

Table 4.5: Averaged MSE of all estimates (in dB) for different SNR scenarios.

Estimator 10dB 40dB

GPTF (DC) 46.45 -0.28

GPTF (GOBFs) 33.46 -7.05

OE (20-th order) 50.94 6.89

GPTF estimators perform better than the parametric estimator, even though the
latter makes use of more data points and more importantly it makes use of the
true model structure. Moreover, the GPTF estimator with the GOBFs based ker-
nel shows a significant improvement with respect to the GPTF estimate with the
DC kernel. The main reason is that the complex conjugate poles included in the
GOBFs based kernel are better at modeling the resonance behavior and result in
a smoother estimate. To visualise such results, the left parts of Figure 4.12, 4.13,
show the estimated FRF and the true function at the validation set of frequencies
of one MC run within the considered frequency band for both cases of SNR of
10dB and 40dB, respectively. The right parts of the figures show the error associ-
ated with the employed estimators in dB. From these figures, it can be easily seen
that the OBFs based kernel performs well compared to the DC kernel based esti-
mator and can deliver an acceptable estimate even in the high frequency range.

4.4 Summary

In this chapter, Bayesian identification of stable LTI systems has been discussed.
First, we have overviewed the classical approach to do that. Then, we have re-
caped the modifications that are needed to adapt the approaches from machine
learning to be applied to dynamic system identification. Existing kernel functions
for LTI impulse response identification have been also discussed and the need for
a new class of kernels has been motivated. The answer of that has been found
in constructing kernel functions based on OBFs where the dynamic prior knowl-
edge can be systematically encoded via the generating poles of the used OBFs.
Such kernels have been modified to guarantee the stability of the estimates by
including a decay term that automatically selects the number of significant basis
that should be used in the kernel construction. The connection between regular-
ized impulse response estimation with OBFs based kernels and regularized OBFs
series expansion based model estimation has been given and the equivalence be-
tween them has been proven theoretically as well as empirically. Moreover, we
have shown that OBFs based kernels have a direct representation in the frequency-
domain and hence provide a powerful tool that can represent dynamic properties
in that domain.
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Figure 4.12: (a) Plot of one MC realisation of the FRF of the data-generating system
with the results of various estimators in case of SNR=10dB. (b) The frequency wise
magnitude of the error (in dB) associated with the considered estimators.
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Figure 4.13: (a) Plot of one MC realisation of the FRF of the data-generating system
with the results of various estimators in case of SNR=40dB. (b) The frequency wise
magnitude of the error (in dB) associated with the considered estimators.
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5 CHAPTER

Bayesian Identification of LPV
Systems

This chapter aims at addressing Subgoals 2 and 3. More specifically,
the Bayesian identification approach presented in Section 3.3 is ex-

tended to efficiently estimate, both in the stochastic and computational
sense, MIMO LPV models under general noise model structure of the
BJ type. The approach is based on the estimation of the one-step-ahead
predictor form of general LPV-BJ structures, where the sub-predictors
associated with the input and output signals are captured as asymptot-
ically stable IIR models. These IIR sub-predictors are identified in a com-
pletely nonparametric sense, where not only the coefficients are estimated
as functions, but also the whole time evolution of the impulse response
w.r.t. the scheduling signal. In the resulting Bayesian setting, the estimate
of the one-step-ahead predictor is a realization from a zero-mean Gaus-
sian random field, where the covariance function is a multidimensional
Gaussian kernel that encodes both the possible structural dependencies
and the stability of the predictor. As a next step, the developed approach
is extended to the identification of series-expansion models, e.g., LPV-IIR
and LPV-OBFs model structures. This chapter is organized as follows: a
brief introduction to LPV prediction error identification is presented in
Section 5.2. The Bayesian identification of LPV-IO models is developed
in Section 5.3, where a suitable kernel function is designed to encode our
prior knowledge about such models. Finally, the extension of the devel-
oped Bayesian approach to LPV series expansion models is given in Sec-
tion 5.4.

5.1 Introduction

Identification of LPV-IO models have gained popularity, as PEM methods have
been successfully extended to LPV models, providing a well-understood frame-
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work for consistency and stochastic interpretation of the estimates together with
low computational complexity of the resulting identification procedures (Tóth
et al. 2012a). Moreover, the PEM framework offers a large class of noise and plant
models, see Tóth (2010) for an overview. Although, LPV-IO models offer a vari-
ety of process and noise representations, where the BJ model is the most general
form, PEM identification of BJ models leads to a nonlinear optimization prob-
lem (Tóth et al. 2012a), which is sensitive to local minima. Alternatively, the IV
method provides an attractive approach that deals with the general noise scenario
and avoids nonlinear optimization (Laurain et al. 2010). Another important issue
in the identification of LPV-IO models is capturing the structural dependency on
the scheduling signal. In the parametric case, the structural dependency is char-
acterized by using a pre-specified set of basis functions, which need either a sig-
nificant prior knowledge of the underlying system or tedious repetitive execution
of methods to synthesize an acceptable basis (Tóth et al. 2012a). In addition, the
choice of the number of these basis represents a challenge, as it directly introduces
a bias/variance trade-off, i.e., by using a smaller number of basis functions, the
under-modeling (bias) error will increase while increasing their number results in
an increase of the variance of the estimated models.

Alternatively, the so-called nonparametric methods offer an attractive approach
to capture the underlying dependencies directly from data without specifying
any parameterization in terms of fixed basis functions. This work is inspired by
the recent advances in nonparametric identification of LTI models in a PEM set-
ting (Pillonetto et al. 2011a) and in the design of optimal kernels (Pillonetto et al.
2014). Here, we aim at formulating a nonparametric estimator of the one-step-
ahead predictor for an LPV-BJ model, preserving both the generality of the noise
class and the asymptotic optimality of PEM. More specifically, we consider the
one-step-ahead predictor as the summation of two sub-predictors associated with
the input and output signals, where these sub-predictors are captured as asymp-
totically stable LPV-IIR models. These LPV-IIR sub-predictors are identified in a
nonparametric sense, where not only the coefficients are estimated as functions,
but also the whole time evolution of the impulse response.

We follow a Bayesian approach for the nonparametric estimation by modeling
the sub-predictors as a realization of a zero-mean Gaussian random field, which
can be completely characterized by its covariance (kernel) function that implicitly
acts as a basis generator to describe both the functional dependencies and the time
evolution of the impulse response of the sub-predictors. To this end, we introduce
a multidimensional Gaussian kernel which encodes:

1 the possible structural dependencies on the scheduling signal by using RBF;

2 the stability of the predictor by including a decay term, which models the
vanishing influence of the past input-scheduling-output pairs on the pre-
dicted output.

Two different kernel formulations are presented for the LPV setting, namely the
DI-like and TC-like kernels, where the TC-like kernel is able to describe the cor-
relation between different coefficient functions associated with different time in-
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stants. The hyperparameters that parameterize the kernel can be efficiently es-
timated from data by maximizing the marginal likelihood w.r.t. the observations
(MacKay 2003). The main contribution in this chapter includes the kernel function
formulation for the MIMO case.

Interestingly, the developed approach for the identification of LPV-IO mod-
els can be extended to the identification of LPV series-expansion models. More
specifically, a nonparametric approach is presented for the identification of a gen-
eral class of LPV models, i.e., LPV-IIR and LPV-OBFs models that can be handled
in a similar setting. Following a nonparametric Bayesian approach, most of the
challenges and problems associated with identification of such models are tack-
led. The parameterization of the coefficients functions are avoided and the con-
vergence of the series-expansion is guaranteed. This is done by considering the
estimation of the expansion as a function estimation problem, where it is modeled
as a zero-mean Gaussian random field with a multidimensional covariance func-
tion that encodes the prior knowledge about the structural dependencies of the
coefficient functions and the convergence of the expansion.

For LPV-OBFs models, the considered model structure is obtained by using
a fixed OBFs structure, where the expansion coefficients are assumed to depend
on a measurable and time-varying scheduling signal. The generating poles of the
OBFs structure are considered as hyperparameters and are tuned by maximizing
the marginal likelihood. Moreover, the presented approach is directly applicable
in case the scheduling signal can not be kept fixed and the identification has to
be done based on a time-varying scheduling signal, i.e., LTI models at different
constant scheduling signal can not be obtained, hence the FKcM approach or any
other method that relies on the optimization of the basis using such local informa-
tion can not be applied.

5.2 Prediction error identification of LPV systems

5.2.1 Impulse response representation of LPV systems

Consider an LPV system S, represented in a filter form of a discrete-time IO rep-
resentations (difference equation), which is defined in the MIMO case as:

na∑
i=0

ai(p, t)q−i︸ ︷︷ ︸
A(p,t,q−1)

y(t) =
nb∑
j=0

bj(p, t)q−j︸ ︷︷ ︸
B(p,t,q−1)

u(t), (5.1)

where u : Z → U = RnU is the input, y : Z → Y = RnY is the output, p :
Z → P is the so-called scheduling variable, which is assumed to be known ex-
actly1, with compact range P ⊂ RnP , the matrix functions ai(p, t) : P × . . . × P →
RnY×nY and bj(p, t) : P × . . . × P → RnY×nU are shorthand notations for ai(p, t) =

1In the LPV framework, the scheduling variable is always assumed to be measurable or available
based on the exact modeling approach taking w.r.t. the physical system, for details see Tóth (2010).
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ai(p(t), . . . , p(t − i)) and bj(p, t) = bj(p(t), . . . , p(t − j)). These functions are as-
sumed to be smooth and bounded functions on P to guarantee the well-posedness
of (5.1). Furthermore, the p-dependent operators A(p, t, q−1) and B(p, t, q−1) are
matrix polynomials in q−1 of degree na, nb ≥ 0, respectively, with varying coeffi-
cients ai, bj . Next, the notion of LPV stability is described, which is relevant to the
subsequent discussion.

Definition 5.1 (Asymptotic stability of LPV systems) an LPV system S represented,
e.g., in a filtered form (5.1), is called globally asymptotically stable, if for all trajectories
of {u(t), y(t), p(t)} ∈ (U,Y,P)Z satisfying the system equation (5.1) with u(t) = 0 for
t ≥ 0 it holds that limt→∞ |y(t)| = 0.

A computational approach to check the asymptotic LPV-IO stability of Definition
5.1 can be found in Wollnack et al. (2017).

Definition 5.2 (BIBO stability of LPV systems) an LPV system S represented, e.g.,
in a filtered form (5.1), is called globally BIBO stable, if for all trajectories of {u(t), y(t),
p(t)} ∈ (U,Y,P)Z satisfying the system equation (5.1), all bounded input trajectories
will result in bounded output trajectories, i.e., in the `k-norm for every 1 ≤ k < ∞ we
have

∞∑
t=0
‖u(t)‖`k <∞ ⇒

∞∑
t=0
‖y(t)‖`k <∞.

It is worth to mention that just like in the LTI case asymptotic stability of LPV
systems implies BIBO stability.

In Tóth (2010), it has been shown that, in discrete-time, the dynamic relation of
an asymptotically stable, according to Definition 5.1, LPV system S, represented
in (5.1) can be described as a convolution involving p and u, corresponding to an
LPV-IIR form. This convolution is given as

y(t) =
∞∑
k=0

gk(p, t)u(t− k),

=
(
(G(q) � p)u

)
(t) ,

( ∞∑
k=0

gk(p, t)q−ku
)

(t)
(5.2)

whereG(q)�p = A†(p, t, q−1)B(p, t, q−1) is the transfer operator, withA†(p, t, q−1)
denoting the unilateral inverse (Darwish et al. 2017b, Lemma 2) of A(p, t, q−1)
under the condition that A is monic, i.e., a0(p, t) ≡ I. The symbol � is used to
express that the dynamic relationship is dependent on the trajectory of p. The so-
called impulse response coefficients gk are functions of p(t) and its time shifted
instances p(t−1), p(t−2), . . . , p(t−k) and assumed to be smooth and bounded on
P. Note that gk(p, t) : P × . . . × P → RnY×nU is a shorthand notation for gk(p, t) =
gk(p(t), . . . , p(t − k)). The description (5.2) is known as the LPV-IIR and can be
seen as a series-expansion representation of S in terms of the so-called pulse basis
{q−k}∞k=0. It can be proven that for any asymptotically stable LPV system S, the
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expansion (5.2) is convergent (Tóth 2010). Note that for a constant scheduling
signal, i.e., p(t) = p̄ ∀t ∈ Z with p̄ ∈ P being a constant, (5.2) becomes equivalent
to the IIR of an LTI system, where gk(p̄, . . . , p̄) corresponds to the k-th Markov
parameter of that LTI system. Due to the asymptotic stability of the considered
system, the IIR in (5.2) can be truncated to a finite expansion

y(t) ≈
n∑
k=0

gk(p, t)q−ku(t), (5.3)

which is known as an LPV-FIR model of order n, where the truncation error, i.e.,∑∞
k=n+1 gk(p, t)q−ku(t), can be made arbitrary small by choosing n large enough

to capture the dominant dynamics of the system. By using the LPV-IIR representa-
tion, the classical LTI-PEM framework has been successfully extended to the LPV
case in Tóth (2010); Tóth et al. (2012a), where such a setting allows for sophisti-
cated analysis of LPV-IO models. In the following, we present the data-generating
system, which is an essential concept of the LPV-PEM framework.

5.2.2 Data-generating system

Similar to the LTI-PEM case, the LPV data-generating system is considered as a
discrete-time deterministic p-dependent filter G0 whose output is affected by an
additive stochastic noise process v : Z → Y, which is assumed to be a quasi-
stationary with a bounded power spectral density (Tóth 2010), see Figure 5.1.
Consider a MIMO LPV data-generating system described in DT that can be de-
scribed by the following difference equations:

A0(p, t, q−1)y̆(t) = B0(p, t, q−1)u(t), (5.4a)

D0(p, t, q−1)v(t) = C0(p, t, q−1)e(t), (5.4b)
y(t) = y̆(t) + v(t), (5.4c)

where y̆ : Z → Y = RnY is the noiseless output. Similar to (5.1), the p-dependent
operators A0(p, t, q−1) and B0(p, t, q−1) that describe the process model (5.4a) are
matrix polynomials in q−1 of degree na and nb, respectively:

A0(p, t, q−1) = InY +
na∑
i=1

ao
i (p, t)q−i, (5.5a)

B0(p, t, q−1) =
nb∑
j=0

bo
j (p, t)q−j , (5.5b)

where the matrix functions ao
i (p, t) : P × . . . × P → RnY×nY and bo

j (p, t) : P ×
. . . × P → RnY×nU are shorthand notations for ao

i (p, t) = ao
i (p(t), . . . , p(t − i)) and

bo
j (p, t) = bo

j (p(t), . . . , p(t − j)). These functions are assumed to be smooth and
bounded functions on P. The resulting transfer operator that describes the process
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part, i.e., the deterministic part, is given as

G0(p, t, q−1) = A†0(p, t, q−1)B0(p, t, q−1), (5.6a)

=
∞∑
k=0

go
k(p, t)q−k (5.6b)

where A†0 denotes the unilateral left inverse (Darwish et al. 2017b, Lemma 2), of
the monic A0 and go

k are the impulse response coefficients associated with the
LPV-IIR of the process part and are assumed to be bounded w.r.t. all p ∈ P.
Remember that, such an IIR is guaranteed to be convergent under asymptotic

Output additive 
noise process

Process 
dynamics

u y
G0(q) � p

H0(q) � p

e

v
+

y̆

p

Figure 5.1: LPV concept of the data-generating system.

stability of the true underlying system. In a similar fashion, the noise model rela-
tion (5.4b), i.e., the stochastic part, characterized by C0(p, t, q−1) and D0(p, t, q−1),
which are monic matrix polynomials (5.7) in q−1, is defined as

C0(p, t, q−1) = InY +
nc∑
i=1

coi (p, t)q−i, (5.7a)

D0(p, t, q−1) = InY +
nd∑
j=1

do
j (p, t)q−j , (5.7b)

where coi (p, t) : P × . . . × P → RnY×nY and do
j (p, t) : P × . . . × P → RnY×nY are

the coefficient function matrices of degree nc and nd, respectively. The resulting
transfer operator that describes the stochastic part is given as

H0(p, t, q−1) = D†0(p, t, q−1)C0(p, t, q−1), (5.8a)

= InY +
∞∑
k=1

ho
k(p, t)q−k, (5.8b)

where D†0 denotes the unilateral left inverse of the polynomial D0, and ho
k are

assumed to be bounded functions. Hence, the noise process v can be described by

v(t) = H0(p, t, q−1)e(t), (5.9)



5.2 Prediction error identification of LPV systems 115

where H0 represents a convergent and monic LPV-IIR, i.e., it corresponds to an
asymptotically stable2 LPV filter with H0(·, ·,∞) = InY , and e : Z → Y is a white
noise process with normal (Gaussian) distribution, i.e., e(t) ∼ N (0,Σe) with co-
variance Σe ∈ RnY×nY .

5.2.3 The IIR form of the one-step-ahead predictor

In classical identification approaches, one is interested in finding the process G0
and noise dynamics H0, e.g., see (Ljung 1999),

y(t) = G0(p, t, q−1)u(t) +H0(p, t, q−1)e(t), (5.10)

where the process and noise models are defined in (5.6)-(5.8). Similar to the LTI
case (Ljung 1999), under the assumption of the existence of a stable inverse of the
H0, the representation (5.10) can be formulated based on the trajectory of u, p, y
and the current value of e as3

y(t) =
(
InY −H

†
0(p, t, q−1)

)
y(t) +H†0(p, t, q−1)G0(p, t, q−1)u(t) + e(t). (5.11)

Assume furthermore that a data sequence DN = {u(t), p(t), y(t)}Nt=1, generated
by (5.10), is available. Under the given assumptions, the so-called one-step ahead
prediction of y(t) based on {y(t−1), y(t−2), . . .}, {p(t), p(t−1), . . .} and {u(t), u(t−
1), . . .} is the conditional expectation of (5.11) w.r.t. the past data, providing that

ŷ(t) =
(
InY −H

†
0(p, t, q−1)

)
y(t) +H†0(p, t, q−1)G0(p, t, q−1)u(t). (5.12)

Following a similar reasoning as in the LTI case, a parameterized model is hy-
pothesized i.e., (Gθ(p, t, q−1), Hθ(p, t, q−1)) , where θ ⊂ Θ represents the param-
eter vector that comes from a real-valued parameterization of coefficients of the
model, i.e., {ao

i , . . . , d
o
i } according to (5.4), and Θ ∈ Rnθ is the allowed parameter

space. This model structure leads to the one-step ahead predictor:

ŷθ(t) =
(
InY −H

†
θ (p, t, q−1)

)
y(t) +H†θ (p, t, q−1)Gθ(p, t, q−1)u(t). (5.13)

Now again, we are looking for an estimate of θ such that ŷθ is a “good” approxi-
mation of y, in the sense that the prediction error

ε(t, θ) := y(t)− ŷθ(t), (5.14)

is minimized, which can be performed, just like in the LTI case, by the minimiza-
tion of the scalar-valued LS identification criterion (2.36).

Under the assumption that, in (5.12), both
(
InY −H

†
0

)
and H†0G0 correspond

to stable LPV filters, the one-step-ahead predictor of the system given in (5.4) can
2The asymptotic stability of H0 is a necessary assumption in the classical PEM setting, otherwise,

the power spectrum density of the noise process would not be bounded resulting in an ill-posed esti-
mation problem of G0. It is possible to define PEM and estimation under noise scenarios which can
not modeled under this condition, however, such considerations are beyond the scope of this thesis.

3The interested reader is referred to Tóth et al. (2012a) for a detailed proof.
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be written as:

ŷ(t | t− 1) =
∞∑
i=1

hy,i(p, t)q−iy(t) +
∞∑
j=0

hu,j(p, t)q−ju(t), (5.15)

where, hy,i(p, t) : P × . . . × P → RnY×nY and hu,j(p, t) : P × . . . × P → RnY×nY are
real bounded and smooth4 matrix coefficient functions in the scheduling signal p.

With the IIR representation it is possible to formulate a predictor, which is only
based upon the past input-scheduling-output signals. It is worth to mention that
the IIR predictor form (5.15) also exists for LPV state-space models represented
with a specific innovation noise structure, making representation (5.15) also at-
tractive for identifying such LPV-state space models, e.g., (van Wingerden and
Verhaegen 2009; Proimadis et al. 2015).

This representation is similar to the LTI case, where the one-step-ahead predic-
tor is written as a summation of the output of two IIRs. In the LTI case, estimation
of such a predictor boils down to the estimation of two impulse responses with
LS, whereas in the LPV case and due to the difficulties associated with parameter-
izing the structural dependency on p, such an estimation task becomes challeng-
ing. More specifically, one may go for a simple parameterization of (ao

i , . . . , d
o
i )

in (5.5)-(5.7), which results in a nonlinear estimation problem, prone to local min-
ima. A direct parameterization of hy,i, hu,j in (5.15) may lead to a simple estima-
tion problem, but requires a complicated basis with large number of parameters
to be estimated from data, which leads to estimates with large variance. More-
over, the “optimal” basis that are required to parameterize hy,i, hu,j are rarely
known a priori. The question is how to utilize the simplicity of the IIR form (5.15),
but overcome the issues associated with its identification, i.e., how to avoid the
need for large parameterization of hy,i, hu,j and at the same time to optimize the
bias/variance trade-off of the estimates? A solution can be found in the regular-
ization framework, see Chapter 3. More specifically, the functional dependencies
hy,i, hu,j are estimated nonparametrically, where a regularization is introduced to
keep the variance of the estimates low by allowing a small amount of estimation
bias.

5.3 Bayesian identification of LPV-IO models

In this section, the Gaussian regression framework of Chapter 3, will be applied to
the LPV-IIR representation of the one-step- ahead predictor (5.15). First, the iden-
tification of (5.11) will be formulated as a function estimation problem as shown
in Chapter 3. Second, an appropriate kernel K will be designed for the estimation
of the unknown structural dependencies on p.

4It can be shown that hy,i and hu,j are polynomial functions of (ao
i , . . . , d

o
i ) and due to the assumed

asymptotic stability they decay to the zero function.
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5.3.1 GP regression model
The covariance on the noise e is assumed to be diagonal, i.e., Σe = diag

(
[σe

2
1 · · ·

σe
2
nY

]
)
. Hence, the ν−th output channel of (5.15) can be written as:

[
y(t)

]
ν

=
nY∑
ι=1

∞∑
i=1

[
hy,i(p, t)

]
ν,ι
q−i
[
y(t)

]
ι

+
nU∑
ι=1

∞∑
i=1

[
hu,i(p, t)

]
ν,ι
q−i
[
u(t)

]
ι

+
[
e(t)

]
ν
,

(5.16)
where

[
hy,i(·)

]
ν,ι

denotes the (ν, ι)-th element of the matrix function hy,i(·) and[
y(t)

]
ν

is the ν-th element of the vector y(t). Eq. (5.16) can be written as

[
y(t)

]
ν

=
nY∑
ι=1

fyν,ι

(
x(t)
)

︸ ︷︷ ︸
fyν

+
nU∑
ι=1

fuν,ι

(
x(t)
)

︸ ︷︷ ︸
fuν︸ ︷︷ ︸

fν=
[
ŷ(t|t−1)

]
ν

+
[
e(t)

]
ν
, (5.17)

where fyν , fuν represent the sub-predictors that form the one-step-ahead predictor
fν , and

fyν,ι

(
x(t)
)

=
∞∑
i=1

[
hy,i(p, t)

]
ν,ι
q−i
[
y(t)

]
ι
,

fuν,ι

(
x(t)
)

=
∞∑
i=1

[
hu,i(p, t)

]
ν,ι
q−i
[
u(t)

]
ι
,

(5.18)

which, under the stability assumption of the data-generating system, represent
convergent IIRs with fyν,ι (·) : P× . . .×P×Y× . . .×Y→ R and fuν,ι (·) : P× . . .×P×
U × . . . × U → R. It is worth to remind the reader that x(t) =

{
u(t), p(t), y(t−1)} is

the shorthand notation of the past measurements till time t, e.g., u(t) = {u(k)}k≤t.
From (5.17), the identification of the one-step-ahead predictor fν can be con-

sidered as a standard GP regression model. More specifically, by following the
Bayesian setting within the GP framework detailed in Chapter 3, fyν,ι (·) , fuν,ι (·) are
assumed to be a particular realization from a zero-mean Gaussian random field,
i.e.,

fyν,ι (·) ∼ GP
(
0,Ky

ν,ι

)
, fuν,ι (·) ∼ GP

(
0,Ku

ν,ι

)
, (5.19)

respectively, where fyν,ι (·) , fuν,ι (·) can be completely defined by their covariances
Ky
ν,ι,K

u
ν,ι. In the Bayesian setting, these covariance functions encode the prior

knowledge and assumptions about the to be estimated functional dependency.
Hence, in order to have a successful identification, the kernel function needs to be
appropriately designed for the problem at hand.

5.3.2 Kernel design for LPV-subpredictors

First of all, within the LPV framework, the relation between the input and the
output is assumed to be linear, but with coefficients ao

i , . . . , d
o
i in (5.5)-(5.7) that are
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dependent on the scheduling variable p. In many situations, the functional de-
pendencies consist of a p-independent (LTI) part and a p-dependent part, which
should be represented in the kernel. In addition, the kernel should explicitly in-
clude the stability of the one-step-ahead predictor. To conclude, the kernel func-
tions Ky

ν,ι,K
u
ν,ι should be parameterized to

B1 Describe possible structural dependencies on p.

B2 Encode asymptotic stability of the predictor.

B3 Take the LTI part into account.

Next, we show how to design a kernel satisfying B1-B3 to identify the MIMO
LPV-BJ system by employing the one-step-ahead predictor (5.15). From (5.17) and
under the GP prior (5.19) of the IRR (5.18), for output channel ν, we collect the data
in the vector Yν =

[
[y(1)]ν · · · [y(N)]ν

]>. Under the assumption that E
{
fyν,ιf

u
ν,ι′

}
=

0 for all ν, ι = 1, . . . , nY and ι′ = 1, . . . , nU, the covariance of the output channel ν
is given by E

{
YνY

>
ν

}
and its (i, j)−th entry is described as follows:

E
{[
y(i)
]
ν

[
y(j)

]
ν

}
=

nY∑
ι=1

Ky
ν,ι

(
x(i), x(j)

)
+

nU∑
ι=1

Ku
ν,ι

(
x(i), x(j)

)
+ σe

2
ν . (5.20)

where Ky
ν,ι is defined as5

Ky
ν,ι

(
x(i), x(j)

)
= E

{
fyν,ι

(
x(i)
)
fyν,ι

(
x(j)
)}

=
∞∑
i=1

∞∑
j=1

([
y(i− i)

]
ι
Qy
ν,ι

(
p(i,i), p(j,j)

) [
y(j− j)

]
ι

)
. (5.21)

In (5.21), p(i,i) being the vector of past scheduling values starting from time i till
i− i, i.e., p(i,i) =

[
p>(i) · · · p>(i− i)

]> and

Qy
ν,ι

(
p(i,i), p(j,j)

)
= E

{[
hy,i(p, i)

]
ν,ι

[
hy,j(p, j)

]
ν,ι

}
.

It is obvious that we need to parameterize the kernel Qy
ν,ι to encode the prior

knowledge, i.e., B1-B3. Interestingly, due to the linearity of the addressed system
class, ideas of kernel design for LTI systems; e.g., DI kernel (Chen et al. 2012), TC
kernel (Pillonetto and De Nicolao 2010), etc., can be extended to the considered
setting in this chapter. More specifically, in the following, we show how to design
a DI-like and a TC-like kernel for LPV systems.

To this end, let us analyze the prior knowledge that is needed to be encoded
into the kernel function in more details. First, to describe the underlying structural
dependency on p represented in terms of the matrix coefficient functions hy,i, hu,j ,
i.e., Item B1, any positive definite kernel, e.g., polynomial, spline, etc., can be used.

5Note that Ku
ν,ι is defined in a similar fashion.



5.3 Bayesian identification of LPV-IO models 119

However, the appropriate choice is problem-dependent. In our case, hy,i, hu,j , are
smooth matrix coefficient functions and hence the RBF kernel can be used effi-
ciently to describe such a dependency. Secondly, to encode the asymptotic stabil-
ity of the predictor or equivalently to guarantee the convergence of the estimated
IIR, i.e., Item B2, a decay term should be included that models the vanishing in-
fluence of the past input-scheduling-output pairs on the predicted output, i.e.,
the effect of {y(k), u(k), p(k)} over y(t) decreases as t − k → ∞. Thirdly, to take
the LTI part into account, i.e., Item B3, the kernel function should be composed
of two parts, namely a part to describe the LTI dynamics and a part to describe
the p−dependent dynamics, e.g., the RBF. In view of the above discussion, a gen-
eral formulation of a kernel function that encodes the prior knowledge about the
underlying IIR fyν,ι (·) is

Qy
ν,ι

(
p(i,i), p(j,j)

)
= Qy,lin

ν,ι (i, j)︸ ︷︷ ︸
linear part

+Qy,p
ν,ι

(
p(i,i), p(j,j)

)
︸ ︷︷ ︸

p-dependent part

, (5.22)

where

Qy,lin
ν,ι (i, j) = β1r1(β2), (5.23a)

Qy,p
ν,ι

(
p(i,i), p(j,j)

)
= β3r2(β4) exp

−∥∥p(i,i) − p(j,j)
∥∥2

2[
βy

w(i, j)
]2
ν,ι

 , (5.23b)

with β1, β3 being scaling parameters, r1(β2), r2(β4)→ 0 as i, j →∞ to describe the
decay of the expansion coefficient, i.e., to ensure that the IIR is convergent. The
RBF part describes the possible structural dependency on p, where

[
βw(i, j)

]
ν,ι

is
the width of the RBF.

Due to the assumed stability of the resulting one-step-ahead predictor, the IIRs
of the associated sub-predictors fyν,ι (·), fuν,ι (·) in (5.17) asymptotically decay to
zero and the high-order terms of the expansion become insignificant. Hence, the
one-step-ahead predictor can be arbitrary well approximated by truncating the
corresponding infinite sum. The truncated one-step-ahead predictor for channel
ν is given by

f̄ν =
nY∑
ι=1

f̄yν,ι (·)︸ ︷︷ ︸
f̄yν

+
nU∑
ι=1

f̄uν,ι (·)︸ ︷︷ ︸
f̄uν

, (5.24)

with

f̄yν,ι (·) =
nfy∑
i=1

[
hy,i(p, t)

]
ν,ι
q−i
[
y(t)

]
ι
,

f̄uν,ι (·) =
nfu∑
i=1

[
hu,i(p, t)

]
ν,ι
q−i
[
u(t)

]
ι
,

(5.25)

where nfy and nfu are large enough to capture the dominant dynamics of the sys-
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tem. As a result, the covariance function (5.21) can be accordingly truncated to a
finite order as

K̄y
ν,ι

(
x̄(i), x̄(j)

)
= E

{
f̄yν,ι

(
x̄(i)
)
f̄yν,ι

(
x̄(j)
)}

=
nfy∑
i=1

nfy∑
j=1

([
y(i− i)

]
ι
Qy
ν,ι

(
p(i,i), p(j,j)

) [
y(j− j)

]
ι

)
, (5.26)

where x̄(i) is the set of truncated past measurements, i.e., x̄(i) =
{
u(i,nfu ), p(i,nf),

y(i,nfy )
}

and nf = max(nfy , nfu) is the maximum truncation order. It is worth to

remind that the truncated covariance K̄u
ν,ι

(
x̄(i), x̄(j)) is defined similarly to (5.26),

but with truncation order nfu .

In this case, i.e., truncated kernel representation, for the output channel ν the
hyperparameters consists of the following items:

• nY(nfy + 4) kernel parameters of the output side sub-predictor. For each of
the nY IRRs, nfy +4 parameters are needed. Specifically, four parameters are
needed to characterize the decay terms, i.e., two of them for the LTI part and
the other two for the p-dependent part, in addition to the nfy characteristic
length parameters that characterize the width of the RBF kernel.

• nU(nfu+4) kernel parameters of the input side sub-predictor., where we have
nU number of sub impulse responses associated with inputs. The details are
the same as in the above point.

• The noise variance if considered as a hyperparameter6.

As a result, the total number of hyperparameters is
Output related sub IRRs︷ ︸︸ ︷
nY (nfy + 4)︸ ︷︷ ︸

For each sub IIR

+

Input related sub IIRs︷ ︸︸ ︷
nU (nfu + 4)︸ ︷︷ ︸

For each sub IIR

+ 1︸︷︷︸
Noise variance


︸ ︷︷ ︸

For each output

nY, (5.27)

which grows rapidly in nY, nU, nfy , and nfu , potentially leading to a computational
problems. However, further assumptions can be made to reduce the number of
hyperparameters:

Assumption 5.1 For the output channel ν: all the sub IIRs associated with the sub-
predictor fyν , i.e., fyν,ι (·) for ι = 1, . . . , nY, share the same decay rate, i.e., they share the
same parameterization for r1, r2, in (5.23) with different scaling parameters. The same
assumption can be taken for the IIRs associated with the sub-predictor fuν , i.e., i.e., fuν,ι (·)
for ι = 1, . . . , nU.

6Another possibility is to identify a high order ARX or FIR model and then use the sample variance
of the residual as an estimate of the noise variance. However, this is more complicated in the LPV case,
as usually it is not known what type of dependency structure should be considered for these models.
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Assumption 5.2 For every IIR fyν,ι (·), the kernel width is assumed to be the same for all
coefficient functions within this IIR, i.e.,

[
βy

w(i, j)
]2
ν,ι

are the same for all i, j, in (5.23).
The same holds true for fuν,ι (·).

Under Assumptions 5.1-5.2, the total number of hyperparameters needed to be
estimated from data is reduced to(

3 (nY + nU) + 5
)
nY. (5.28)

For example, in case nY = 2, nU = 2, nfy = nfu = 10, the total number of the
hyperparameters that are needed to be estimated is 114. However, by following
Assumptions 5.1, 5.2, this number is reduced to 34. Based on the above consid-
erations, now we have two different scenarios w.r.t. the relation between the co-
efficient functions associated with different time instants: i) being uncorrelated,
a DI-like representation of the resulting kernel in (5.22) can be realized with the
following choice

Qy
ν,ι

(
p(i,i), p(j,j)

)
=
[
β1
]
ν,ι

([
β2
]
ν

)i
δi,j+

[
β3
]
ν,ι

([
β4
]
ν

)i exp

−∥∥p(i,i) − p(j,j)
∥∥2

2[
βy

w(i, j)
]2
ν,ι

 δi,j , (5.29)

where δi,j is the Kronecker delta function w.r.t. (i, j); ii) being correlated, a TC-
like modification of the above given kernel can be also given to take the correla-
tion between the coefficient functions associated with different time instants into
account:

Qy
ν,ι

(
p(i,i), p(j,j)

)
=
[
β1
]
ν,ι

([
β2
]
ν

)max(i,j)

+
[
β3
]
ν,ι

([
β4
]
ν

)max(i,j) exp

−∥∥p(i,i) − p(j,j)
∥∥2

2[
βy

w(i, j)
]2
ν,ι

 , (5.30)

where
[
β1
]
ν,ι
,
[
β3
]
ν,ι

are scaling parameters of the LTI and the p−dependent part
of the (ν, ι)−th sub IIR, respectively, and

[
β2
]
ν
,
[
β4
]
ν

are the parameters that de-
termine the decay rate of the IIRs associated with the ν-th output channel. See
Figure 5.2 to visualize the difference between the DI and TC kernels in terms of
representing the correlation between coefficient functions associated with differ-
ent time instants. The left part of Figure 5.2 displays a scaled image of a kernel
matrix constructed with the DI kernel, where it can be easily seen that only the
diagonal elements are nonzeros, i.e., the elements associated with different time
instants are assumed to be uncorrelated, whereas the right part of the figure dis-
play the scaled image in case of TC kernel, where not only the diagonal entries, but
also the off-diagonal entries are nonzero, providing the kernel with the ability to
express the correlation between functions associated with different time instants.
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Figure 5.2: Scaled image of a kernel matrix constructed with: Left part: DI kernel.
Right part: TC kernel. Note that the resulting image is an m × n grid of pixels
where m and n are the number of columns and rows of the kernel matrix, respec-
tively. Each element of kernel matrix specifies the color for a pixel of the image
according to the color map shown on the right of each figure.

5.3.3 Estimation of the predictor from data

The last remaining item to discuss is the estimation of the predictor fν in (5.17)
by the truncated model (5.24) from a given data set DN = {y(t), u(t), p(t)}Nt=1.
This is accomplished within the Gaussian regression framework, introduced in
Chapter 3. First, let us define β to denote the vector of unknown hyperparameters
related to the output channel ν. Furthermore, let Y =

[
y>(1) · · · y>(N)

]>
, Y ′ =[

y>(nf +1) · · · y>(N)
]>, U =

[
u>(1) · · ·u>(N)

]>, Y ′ν =
[
[y(nf +1)]ν · · · [y(N)]ν

]>,

and P =
[
p>(1) · · · p>(N)

]>.
The minimum variance estimate of the predictor for output channel ν, i.e., f̄ν

in (5.24) conditioned on a fixed β can be written as

f̂ν(•) = E
{
f̄ν(•) | Y,U, P, β

}
=

N∑
t=nf+1

ct−nf
K̄ν

(
•, x̄(t)

)
, (5.31)

K̄ν

(
•, x̄(t)

)
=

nY∑
ι=1

K̄y
ν,ι

(
•, x̄(t)

)
+

nU∑
ι=1

K̄u
ν,ι

(
•, x̄(t)

)
,

where x̄(t) is the set of truncated past measurements, i.e., x̄(t) =
{
u(t,nf), p(t,nf),

y(t,nf)
}

and ct−nf
is the (t− nf)-th component of the vector

c =
(
Σν(β)

)−1
Y ′ν ,
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with Σν(β) ∈ RN−nf×N−nf being invertible7 and given by[
Σν(β)

]
i,j

= K̄ν

(
x̄(nf+i), x̄(nf+j)

)
+ σe

2
νδi,j .

Now the minimum variance estimate obtained in (5.31) is conditioned on a fixed
value of the hyperparameters vector β. In this work, we follow the approach of
maximizing the marginal likelihood of the output w.r.t. β (MacKay 2003). More
specifically, the log-marginal likelihood of the observations Y ′ν given β:

logp(Y ′ν | U,P, β) = −N2 log(2π)− 1
2Y
′
ν
>(Σν(β)

)−1
Y ′ν −

1
2 log det (Σν(β)) . (5.32)

Then, an estimate for β is obtained by maximizing the marginal likelihood or
equivalently

β̂ = argmin
β

− logp(Y ′ν | U,P, β). (5.33)

According to the empirical Bayes approach (Carlin and Louis 2000), the minimum
variance estimate of the predictor, i.e., f̂ν(•) in (5.31), is obtained by substituting
the optimized β̂ from (5.33). Moreover, such an estimate is associated with a prob-
ability level or confidence region which provide a quantification for the quality of
the estimate via computing the variance of the prediction by applying (3.23)

cov
(
f̂ν(•) | Y,U, P, β

)
= K̄ν(•, •)− k >ν

[
Σν(β̂)

]−1
k ν , (5.34)

where k ν =
[
K̄ν

(
•, x̄(nf+1)) · · · K̄ν

(
•, x̄(N))]>.

5.3.4 Reconstruction of the individual coefficient functions

In the following, we illustrate how to recover the individual coefficient functions
from the estimated one-step-ahead predictor.

By remembering (5.31) and the definition of K̄y
ν,ι

(
x̄(i), x̄(j)) in (5.26). From

(Pillonetto et al. 2011b, Theorem 4), it can be seen that the kernels Qy
ν,ι, Qu

ν,ι in-
duce mutually orthogonal subspaces HQy

ν,ι
, HQu

ν,ι
, where, HQy

ν,ι
, HQu

ν,ι
, denote

the associated RKHSs withQy
ν,ι,Qu

ν,ι, respectively. As a result, the minimum vari-
ance estimate of the individual coefficient functions, i.e., [ĥy,i]ν,ι, [ĥu,j ]ν,ι, can be
obtained as the orthogonal projection of f̂ν(•) ∈ HK̄ν

, where HK̄ν
is the RKHS

associated with K̄ν , onto HQy
ν,ι

, HQu
ν,ι

, respectively, as follows:

[
ĥy,i(•)

]
ν,ι

=
N∑

k=nf+1
ck−nf

[
y(k − i)

]
ι
Qy
ν,ι

(
•, p(k,i)

)
, (5.35)

7 Since the corresponding kernel function is positive semidefinite, the resulting Σν becomes a sym-
metric and positive definite kernel matrix. Hence, its inverse exists.
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and the corresponding covariance estimate is given by

cov
([

ĥy,i(•)
]
ν,ι

)
= Qy

ν,ι(•, •)−
(

k y
ν,ι

)>(Σν(β)
)−1

k y
ν,ι, (5.36)

where

k y
ν,ι =

[
Qy
ν,ι

(
•, p(nf+1,i))[y(nf − i+ 1)

]
ι
· · · Qy

ν,ι

(
•, p(N,i))[y(N − i)

]
ι

]>
. (5.37)

Such a covariance estimate provides a quantification of the uncertainties of the
estimated coefficient functions by highlighting the regions that suffer from poor
excitation. Hence, such information can be used to further improve the estimate.
The minimum variance estimate of ĥu,i(•) and its associated covariance can be
formulated in a similar fashion.

It is interesting to mention that the obtained nonparametric estimates of the
one-step-ahead predictor, i.e., ĥy,i, ĥu,i in (5.35), can be utilized to obtain a non-
parametric estimates of the process and noise dynamicsG0, H0, respectively. More
specifically, a nonparametric estimate of go

k, h
o
k in (5.6b)-(5.8b), respectively, can be

realized via recursive relations that depend on the identified ĥy,i, ĥu,i see (Darwish
et al. 2017b, Section 5).

5.3.5 Numerical simulation

In this section, the performance of the presented nonparametric approach for the
identification of LPV-BJ models based on their one-step-ahead predictor is shown
by means of an extensive Monte-Carlo study.

Data-generating system

The considered data-generating system is a MIMO system with nU = 2, nY = 2
and nP = 2 in the form of (5.4). The LPV-BJ data-generating system has a plant
model order of na = nb = 2 and a noise model order of nc = nd = 2. The matrix
polynomials associated with the plant and noise models are given in details in
Appendix B.

Identification setting

The one-step-ahead predictor is estimated using an identification data set with
three different sizes N = {200, 500, 1000} and the prediction performance of the
estimated model is examined on a validation data set that contains Nval = 200
samples. The identification and validation data sets are generated with indepen-
dent realizations of a white noise input signal u with uniform distribution, i.e.,
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[
u(t)

]
ν
∼ U(−1, 1), ν = 1, 2. The scheduling signals are given by[

p(t)
]
ν

= 0.4 sin(0.035t+ νπ

5 ) + 0.25ν + U(−0.15, 0.15), for ν = 1, 2. (5.38)

The variance of the white noise e driving the noise process is chosen such that the
SNR ratio

SNR[y]ν = 10 log
∑N
t=1
[
y(t)

]2
ν∑N

t=1
[
v(t)

]2
ν

,

is 20dB. To analyze the statistical properties of the presented identification ap-
proach, a Monte-Carlo study with NMC = 100 runs is carried out. At each run, a
new realization of the input u, the scheduling signal p and the noise e are taken.

The predicted output ŷ from the estimated one-step-ahead predictor model is
compared to the true output of the data-generating system by the BFR

BFR = max
(

1−
1
N

∑N
t=1
∥∥y(t)− ŷ(t)

∥∥
2

1
N

∑N
t=1
∥∥y(t)− ȳ

∥∥
2

, 0
)
· 100%, (5.39)

where ȳ defines the mean of the true output y(t). Note that the definition in (5.39)
characterizes the average performance over all output channels.

Identification results

In this section, the results of the identification of the one-step-ahead predictor of
the data-generating system given in Section 5.3.5 under the identification setting
detailed in Section 5.3.5 are discussed. The results have been obtained with a
truncation order nfy = nfu = nf = 10. The considered estimators are

1. Bayesian estimator with the DI-like kernel, i.e., (5.29).

2. Bayesian estimator with the TC-like kernel, i.e., (5.30).

3. Oracle estimator that knows the true underlying nonlinear functional de-
pendencies8 of hy,i, hu,j . With such knowledge, the Oracle estimator per-
forms a LS estimate of a high-order ARX model with a truncation order of
n = 15, which is chosen large enough to capture the dynamics of the system.
It is worth to mention that the number of parameters is (2n+ 1)nY, which in
this case gives 62 parameters to be estimated via LS. In this case, the trunca-
tion order introduces a bias/variance trade-off which is not the case in the
nonparametric estimation. Note that such an Oracle estimator is considered
to establish a notion of the “best achievable” performance and it is not appli-
cable in practice as the true underlying nonlinear functional dependencies
are not known a priori.

8A recursive expressions to calculate such functions based on the true underlying coefficient func-
tions of the process and noise dynamics (5.5)-(5.7) can be found in (Darwish et al. 2017b, Equation
12).
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In case of the Bayesian estimator, the hyperparameters are estimated via solving
(5.33). Figure 5.3 displays the first 50 samples of one realization of the true and
the predicted output response on the validation data set with 95% confidence re-
gion for the one-step-ahead predictor estimated with TC-like kernel, truncation
order of nf = 10 and a data set with N = 1000 samples for both output channels.
The figure shows that the presented Bayesian approach is able to identify an LPV
model under the general noise model structure of BJ type. Table 5.1 gives the
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Figure 5.3: The first 50 samples of the true and the predicted output response on
the validation data set with 95% confidence region for the one-step-ahead predic-
tor estimated with TC-like kernel, model order of nf = 10 and a data set with
N = 1000 samples.
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Figure 5.4: The BFR of the predicted response with respect to the validation data
sets using the estimated models for the DI, TC kernels and the Oracle estimate,
under various sizes of the identification data set N = {200, 500, 1000}.

mean and the standard deviation (std) of the BFR of the identified predictor over
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Table 5.1: Mean and std of the BFR of the identified predictor on the validation
data set over NMC = 100 Monte-Carol runs.

Estimator BFR [%]
Mean Std

N=200, nf=10
DI 87.18 0.8222
TC 87.20 0.8170
Oracle 88.11 0.8150

N=500, nf=10
DI 88.36 0.6769
TC 88.39 0.6804
Oracle 89.01 0.7054

N=1000, nf=10
DI 88.80 0.7173
TC 88.80 0.7227
Oracle 89.32 0.6828

NMC = 100 runs. The performance criterion is based on the predicted output of
the identified predictor on a validation data set. To gain more insights into the
performance of the considered estimators, Figure 5.4 gives the distribution of the
model fit for different sample sizes shown by boxplots. It can be seen from Table
5.1 and Figure 5.4 that all the predictors benefit from the increasing the amount of
samples in the estimation data set, which is evident in the increased BFR. More-
over, the performance of the presented Bayesian approach gets closer to the Oracle
by increasing the size of the data set.

5.4 Bayesian identification of LPV series-expansion mod-
els

In this section, we investigate how to extend the Bayesian identification technique
of LPV systems that has been presented in Section 5.3 to LPV series-expansion
models.

5.4.1 LPV series-expansion by OBFs

As an extension of LTI series expansion representation, it can be proven that
any DT asymptotically stable LPV system S has a series-expansion representa-
tion in terms of rational OBFs Ψ̆ = {ψ̆k}∞k=1, which are the orthonormal basis for
RH 2− (E). Such a representation is very attractive and provide a flexible model
structure which can represent a given LPV system S globally on P (Tóth et al.
2009a). Based on the LTI transfer function theory, a pulse basis function q−i, i > 0
has a unique series-expansion in terms of Ψ̆:

q−i =
∞∑
j=1

wi,jψ̆j(q), (5.40)
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where wi,j ∈ R, i, j = 1, . . . ,∞ are the expansion coefficients. It is known that
such a series-expansion is convergent. Substituting (5.40) into (5.2), the IO of S,
i.e., the process dynamic, in terms of the basis and the associated parameter de-
pendent weighting functions is given by

y̆(t) = W0(p, t)u(t) +
∞∑
k=1

Wk(p, t)ψ̆k(q)u(t), (5.41)

where {Wk(p, t)}∞k=0 is a set of coefficient functions with dynamic dependence on p
with W0(p, t) = g0(p, t) and

Wk(p, t) =
∞∑
l=1

wl,kgl(p, t), (5.42)

for k = 1, . . . ,∞. It is worth mentioning that the coefficient functions Wk(p, t)
can depend on arbitrary many shifted versions of p(t), i.e., {p(t − l)}∞l=0. This
representation is known as the (Wiener) LPV-OBFs representation and can be seen
as a generalization of (5.2), where general basis functions are used instead of pulse
basis. In practice, for asymptotically stable systems it is always possible to find a
finite Ψ̆nψ

⊂ Ψ̆∞, nψ ∈ N, such that the representation error of (5.41) is negligible
as Wk also needs to converge to 0 due to the properties of (5.40) and the stability
of the represented relation. Then, Ψ̆nψ

and their associated weighting functions
provide an efficient representation of S and the IO map of S can be represented as

y̆(t) ≈ W0(p, t)u(t) +
nψ∑
k=1

Wk(p, t)ψ̆k(q)u(t), (5.43)

which is the generalization of the LPV-FIR (5.3). Since LPV-OBFs models can be
seen as a generalization of LPV-IIR models, in the following, we will focus on the
identification of LPV-OBFs models, utilizing a similar approach to what we used
in the LTI case.

5.4.2 Parametric identification of LPV-OBFs models

Consider a SISO9 LPV data-generating system S as described in Section (5.2.2),
where the process dynamics is characterized as a series expansion model in terms
of a given set of OBFs Ψ̆∞ = {ψ̆k}∞k=1, which are a complete set of orthonormal
basis in RH 2− (E), hence,

y(t) = W0(p, t)u(t) +
∞∑
k=1

Wk(p, t)ψ̆k(q)u(t) + e(t), (5.44)

9In this section, we consider a SISO setting to simplify the discussion. The MIMO extension can be
found in Section 5.2.2.
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where e is a zero-mean white Gaussian noise process10 with variance σ2
e , i.e., e ∼

N
(
0, σ2

e
)
. It is worth to mention that the case of colored noise can be handled

similarly as in Section 5.3.

Given a data set DN = {u(t), p(t), y(t)}Nt=1, our goal is to approximate the un-
derlying system S as good as possible by the LPV-OBFs model structure in (5.44).
This boils down to the choice of the basis ψ̆k and estimating the p−dependent
expansion coefficient functions Wk.

In classical LPV identification, given a set of basis functions Ψ̆nψ
= {ψ̆k}

nψ
k=1,

identification of LPV systems based on the representation of (5.44) simplifies to
the estimation of the scheduling functions, i.e., Wk. Under the assumption that
the dependency of Wk on p is static, we can proceed to tackle the identification
task by one of the following methods (Tóth et al. 2009a):

Local approach

The LPV-OBFs model structure also corresponds to the well known fact that an
LPV system S can always be viewed as a collection of “local” behaviors FP =
{Fp̄}p̄∈P, where S is identical to the LTI system Fp̄ for constant scheduling: p(t) =
p̄ ∈ P, for all t ∈ Z, and parameter dependent weighting functions WP = {Wp̄(·)}p̄∈P
that schedule between these local behaviors (Rugh and Shamma 2000). This prin-
ciple can be used in the following way: As FP corresponds to a subset of the LTI
system space, therefore every Fp̄ ∈ FP can be represented as a linear combination
of the orthogonal basis of the LTI system space, denoted by Ψ̆∞ = {ψ̆k}∞k=1, as
Fp̄ = W0 +

∑∞
k=1 Wkψ̆k(q), where {Wk}∞k=0 is the set of coefficients.

Within the local approach, an LPV model is constructed by interpolating LTI
models, i.e., Fp̄ ∈ FP that are identified around some pre-chosen operating points,
with the following LTI-OBFs model structure

y(t) =
nψ∑
k=0

rp̄,kψ̆k(q)u(t) + e(t). (5.45)

First, a functional dependency should be chosen, e.g., polynomial interpolation ,
where monomials of order nm are employed as basis functions, for instance

rp̄,k =
nm∑
j=0

θk,j p̄j , (5.46)

where θk,j ∈ R are the parameters of the polynomials collected into the vector
θ. These parameters can then be estimated by minimizing the quadratic loss l2 of
the approximation error or other error measure w.r.t. the locally estimated expan-
sion coefficients. Then, the resulting rp̄,k is interpolated to obtain an estimate of
{Wk}

nψ
k=0 in (5.44) such that Wk(p̄) = rp̄,k.

10Equation (5.44) corresponds to an OE model structure, where we have an independent parameter-
ization of the process dynamics and the noise dynamics.
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Global approach

The global approach aims at estimating, in one step, an LPV model of the con-
sidered system based only on a single data set with varying scheduling trajectory,
such an estimation approach requires a linear parameterization of each expan-
sion coefficient function, i.e., Wk, in terms of a prior chosen set of basis {φk}

nφ
k=1,

φk : P→ R

Wk =
nφ∑
j=0

θk,jφj . (5.47)

The problem then becomes a linear regression based on (5.44) in a PEM setting.

5.4.3 Associated challenges with LPV-OBFs models identification

Although a series-expansion model structure is very flexible offering several ad-
vantages, its identification from observed data is not an easy task. Many chal-
lenges are associated with the estimation of these models from which some is
shared with the IO models considered in Section 5.3:

1. The selection of a suitable set of OBFs, i.e., {ψ̆k};

2. The parameterization of the coefficient functions, i.e., {Wk(p)} to have a
good bias/variance trade-off without requiring a lot of prior knowledge;

3. How to guarantee the convergence of the estimated expansion while esti-
mating it, which in fact is required from the considered stability viewpoint;

4. How to deal with the dynamic dependency on the scheduling signal.

These challenges have been partially addressed in Tóth et al. (2009a). More specif-
ically, a basis functions selection scheme, which is a joint application of the Kol-
mogrov n-width (KnW) theory (Oliveira e Silva 1996) and Fuzzy c-Means (FcM) clus-
tering (Jain and Dubes 1988), has been proposed that is capable of asymptotically
estimate the optimal set of OBFs based on local information. Then, a local or global
approach can be followed to identify the coefficient functions by first parameteriz-
ing them linearly, e.g., polynomial basis, under the assumption that the functional
dependencies are static, and then perform a linear regression in a LS prediction
error setting. However, as a starting point, the aforementioned approach assumes
that a collection of pole locations is available, obtained from local identification of
the LPV system S, which is not always directly feasible, for instance in systems
where the output is the scheduling signal, see the DC motor example in Chapter 6.
Moreover, the parameterization of the coefficient functions in terms of some basis
functions, e.g., polynomial, requires prior knowledge and in many cases a com-
plicated analysis of first-principles based models is needed, where the benefits
obtained by data-driven modeling can be easily lost. Moreover, such a selection
introduces a bias/variance trade-off, where the selection of the number of basis
function is critical. This means that, in a general setting, the above-mentioned
challenges still need to be further investigated, which is the topic of the next sec-
tion.
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5.4.4 Bayesian identification of LPV-OBFs models

In the following, we show how the developed approach in Section 5.3 can be ex-
tended to identify LPV-OBFs models within the Bayesian setting. Eq. (5.44) can
be written as

y(t) =

f(x(t))︷ ︸︸ ︷
∞∑
k=0

Wk(p, t)uf
k(t)︸ ︷︷ ︸

fk(x(t))

+ e(t), (5.48)

where x(t) = {u(t), p(t)} is a shorthand notation of the past measurements till
time t, i.e., u(t) = {u(k)}k≤t, p(t) = {p(k)}k≤t, and uf

k(t) = ψ̆k(q)u(t) is the fil-
tered input u through the basis function ψ̆k and f represents a convergent series-
expansion. It can be seen that the estimation of LPV-OBFs model from a given
data set DN = {u(t), p(t), y(t)}Nt=1 can be regarded as a standard GP regression
problem (Rasmussen and Williams 2006). More specifically, by assuming that f
is a particular realization from a zero-mean Gaussian random field that can be
completely defined by its covariance K, i.e.,

f ∼ GP
(
0,K

)
, (5.49)

which is the prior knowledge in the considered Bayesian setting. It can be eas-
ily seen that, from this point on, the design of a suitable kernel function K and
the identification of the considered model structure can be performed following
the same approach presented in Section 5.3. The main difference is that the basis
functions utilized in the considered LPV-OBFs model structure are needed to be
estimated. However, within the GPR approach, the generating poles can be con-
sidered as additional hyperparameters as we handled them in Section 4.2.3 and
hence can be estimated by maximizing the marginal likelihood. In this way, the
hyperparameters that parameterize the kernel function can be estimated accord-
ing to the global approach, where only one data set is needed to do both tuning
the hyperparameters and estimating the model. In this way, the basis functions
can be estimated without the need to perform local experiments like in the FKcM
algorithm, and accordingly the presented approach is suitable when maintaining
a constant scheduling is not possible.

5.4.5 Simulation example

In this section, as a simulation example, we consider the following asymptotically
stable DT LPV system S in an IO representation (5.1):

5∑
i=0

ao
i (p(t))y(t− i) = bo

1(p(t))u(t− 1), (5.50)

where p : Z → P is the DT scheduling signal with P = [0.6, 0.8] and ao
0 = 0.58 −

0.1p, ao
1(p) = − 511

860 −
48
215p

2 + 0.3(cos(p) − sin(p)), ao
2(p) = 61

110 − 0.2 sin(p), ao
3(p) =
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− 23
85 + 0.2 sin(p), ao

4(p) = 12
125 − 0.1 sin(p), ao

5(p) = −0.003, bo
1(p) = cos(p).

By using constant scheduling signals with values {0.6; 0.6 + δ; . . . , 0.8}, where
δ = 0.02, 11 frozen local LTI representation of S are obtained, whose pole locations
are shown in Figure 5.5. It can be easily seen that S exhibits significant changes in
its dynamics at different constant p values. Our goal is to obtain an accurate but
low complexity model for the considered system based on observed data.
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Figure 5.5: Pole locations of the 11 frozen LTI models associated with the LPV
system S in (5.50).

Identification setting

A global approach is followed with aN = 500 sample long data record DN , which
has been generated by uniform u ∈ U(−1, 1), p ∈ U(0.6, 0.8) and with additive,
white output noise e, whose variance is chosen such that the SNR ratio is 20dB.
To analyze the statistical properties of the presented identification approach, a
Monte-Carlo study with NMC = 100 runs is carried out. At each run, new realiza-
tions of the input u, scheduling signal p and noise e are taken.

To capture such vast dynamics exhibited by the considered data-generating
system, an LPV-OBFs model structure is estimated from data, i.e., DN , with the
following estimators:

C1 Fully parametric: first obtain the optimal basis based on the frozen local LTI
poles by the proposed approach in Tóth et al. (2009a), then parameterize the
expansion coefficients with a 2-nd order polynomial. Finally, perform an LS
fitting for a (Wiener)-LPV-OBFs model suggested in Tóth et al. (2009a);

C2 Semi nonparametric: the optimal basis are borrowed from C1 and only the
expansion coefficients are estimated in a nonparametric setting from data,
where the RBF kernel is used to describe the underlying structural depen-
dency on p;
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C3 Fully nonparametric: the approach presented in this chapter, where the gen-
erating poles of the basis and the expansion coefficients are jointly estimated
from data in a Bayesian setting.

Furthermore, two different basis scenarios are considered:.

D1 Scenario 1: The GOBFs basis, where the generating inner function is of 8-
th order with three conjugate complex poles pairs and two real poles. This
scenario is considered with the estimators C1, C2;

D2 Scenario 2: The Laguerre basis with one real pole. This scenario is consid-
ered with the estimators C1-C3.

The simulated output ŷ of each of the identified models is compared to the true
output of the data-generating system by the means of the BFR.

Identification results

Let us start with Scenario 1, where the estimators C1, C2 are compared. First, the
result of running the FKcM algorithm to estimate the optimal set of basis based
on the frozen LTI poles is shown in Figure 5.6(a). The selected number of clusters
is 8, as recommended in Tóth et al. (2009a), corresponding to 3 complex conjugate
poles and 2 real poles. The optimized generating poles of the basis are shown
with crosses. From the figure and specifically from the Kolmogorov boundary11

(solid green line), it can be easily seen that the optimized basis are very promising
to be used to represent the underlying system. Second, to estimate the expansion
coefficient functions, in C1 we parameterize them with a 2-nd order polynomial
in p(t) (static dependence) and by performing a LS fitting to identify the model,
the average model fit is 82.25%. However, in C2 and with the optimal basis, the
expansion coefficients are estimated in a nonparametric setting, and the average
model fit is 88.09%. This shows the representation capability of the RBF utilized
in the nonparametric estimate to describe the structural dependence of the coeffi-
cient functions with dynamic dependence compared to the 2-nd order polynomial
basis with static dependence used in the parametric case. For illustration, the dis-
tributions of the model fits are shown by Boxplots in Figure 5.7(a). Now, let us
analyze Scenario 2, where the considered three estimators, i.e., C1-C3, are com-
pared. The used basis in this case is Laguerre basis, where the number of basis
repetition is 10. By running the FKcM algorithm to estimate the optimal Laguerre
basis, the optimal pole is found to be 0.3396, see Figure 5.6(b). From C1 and again
by parameterizing the coefficients functions with a 2-nd order polynomial, the av-
erage model fit is 82.59%. From C2, where the coefficient functions are estimated
in a nonparametric setting with the optimized pole obtained from C1, the average

11Optimality of the optimized OBFs, specifically, the optimized poles of the generating inner func-
tion Hb is ensured with a worst-case decay rate ρne+1

b , with ne is the number of basis repetition,
for systems with pole locations inside the regions defined by the Kolmogorov boundaries. The Kol-
mogorov boundary gives the boundaries of the regions {z ∈ C, |Hb(z−1)| ≤ ρb}.
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(a) Scenario D1, with GOBFs of order 8,
ne = 1
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(b) Scenario D2, with Laguerre basis, ne = 10

Figure 5.6: Results of FKcM clustering: sample poles (o), resulting cluster centers
(x) and Kolmogorov boundaries (green line).

C2: SemiNP C1: Param

80

85

90

Estimator

BF
R

%

(a) Scenario 1

C3: FullNP C2: SemiNP C1: Param

80

85

90

Estimator

BF
R

%

(b) Scenario 2

Figure 5.7: The distributions of the model fits.
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model fit is 88.72%. Finally, with C3, where both the Laguerre pole and expan-
sion coefficient functions are tuned simultaneously from data by maximizing the
marginal likelihood, the average model fit is 88.73%. Such a close result to C2,
where the optimal pole is used, is due to the efficiency of the empirical Bayes
methods to tune the generating pole from data, which gives 0.3277 that is very
close to the optimal pole location computed based on the Kolmogorov theory. As
in Scenario 1, the distributions of the model fits are given by Boxplots in Figure
5.7(b).

5.5 Summary

In this chapter, we have presented a nonparametric identification approach for
MIMO LPV-BJ models. Similar to the LTI case, it has been shown that the one-
step-ahead predictor of such models is a summation of two sub-predictors asso-
ciated with the input and output signals, where under the asymptotic stability of
the data-generating system, these sub-predictors are shown to be convergent IIRs.
To cope with issues associated with identifying such models, e.g., parameteriza-
tion of matrix coefficient functions, a Bayesian nonparametric approach within
the GP framework has been adopted. More specifically, the IIRs associated with
the predictor are assumed to be realizations of zero-mean Gaussian random fields
with a suitable designed kernel that encodes the expected prior knowledge on the
predictor, e.g., stability, structural dependencies, etc. One of the main important
contribution of this work is to show how to design such kernels to encode the
expected prior knowledge about the predictor:

• Ensure the stability of the identified predictor;

• Encode possible structural dependencies;

• Take into account the LTI part as well as the p−dependent part of the model.

Two kernel formulation have been presented, i.e., DI-like and TC-like kernel. The
hyperparameters of the kernels are tuned by maximizing their marginal likeli-
hood over the observed data.

The developed approach has also been extended to series-expansion models,
e.g., LPV-OBFs models, where it has been shown that such a setting could cope the
challenges associated with identifying such models. More specifically, the choice
of a suitable set of OBFs from data by maximizing the ML and guaranteeing the
convergence of the identified series.

In this chapter, we have focused on identifying LPV systems in an IIR and
series-expansion representation forms. In the next chapter, a different point of
view is adopted. More specifically, the goal is to identify LPV models in an LPV-
IO representation instead of the IIR form treated in this chapter, where a more
parsimonious model can be obtained that allows to be further utilized in control
design.
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6 CHAPTER

Model Structure Learning for LPV-IO
Identification

In this chapter, we return to the identification of LPV-IO models from
a different view point by trying to retain the dynamic structure of the

IO form, i.e., estimate the underlying relationship in an IO representa-
tion instead of the IIR form treated in Chapter 5. While the advantage of
the Bayesian method of Chapter 5 was to avoid the problems of model
order, noise structure selection and parameterization of the coefficient de-
pendencies, the results of the estimation procedure was a process model
G and a noise model H in an IIR form. This form is utilizable for pre-
diction but for control design purposes a more parsimonious represen-
tation is needed in the form of an IO model. Due to the difficulties in
LPV realization and model reduction theory, it is also advantageous to
consider kernel based methods of LPV models directly in an IO form.
This chapter aims at addressing this objective, which corresponds to Sub-
goal 4. More specifically, the main question is how to jointly reconstruct
the scheduling-variable dependencies in IO models and at the same time
choose the model order and the corresponding coefficient structure di-
rectly from data, with no prior parametrization. To this end, a unified
learning framework for the identification of LPV-IO models in the RKHS
setting is presented, where various kernel-based methods can be embed-
ded.

6.1 Introduction

It has been discussed in Section 1.4.3 that the LPV modeling problem exhibits
two main challenging issues: (i) the classical questions of determining the “suit-
able” dynamic order of the model, input delay and noise structure; (ii) to de-
termine the underlying functional dependency of the coefficients on p such that

137
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they have the least possible complexity for adequately representing the varia-
tion of the dynamics. Moreover, it has been shown that the available classical
approaches to identify LPV systems have not been successful to fully address (i)-
(ii), which points towards automatization of classical model order selection jointly
with capturing structural dependency of the dynamic relation on the scheduling
signal from data. Moreover, it has been discussed that sparse estimators are capa-
ble of achieving model structure selection from data, however, their performance
strongly depends on adequate a priori selection of the basis functions. Alterna-
tively, nonparametric approaches, e.g., kernel-based methods, offer a solution for
estimating the dependency structure directly from data. However, the classical
problem of selecting the model structure (i.e., model order, number of coefficient
functions, delay etc.) has not been addressed jointly with estimating the depen-
dency structure leaving the complexity/accuracy trade-off in terms of (i) open.

In this chapter, we are aiming at bridging the gap between sparse estima-
tors and nonparametric estimators introduced for LPV identification. This allows
to jointly reconstruct the scheduling-variable dependencies and the model order
(coefficient structure) directly from data, with no prior parametrization of the p-
dependent functions, resolving data-driven model structure selection in terms of
(i) and (ii) in one step. In order to do that, a unified treatment of the sparse non-
parametric estimation setting is introduced in an RKHS framework (Aronszajn
1950; Cucker and Smale 2001) where both the LS-SVM methods and GP formu-
lations are directly included. Hence the derived results are directly applicable in
both methodologies. For the sake of simplicity to show the underlying core ideas,
the derivations are provided for a simple regression form, which assumes that the
data generating system has an ARX structure. Note that the case of more general
noise model structure can be handled by utilizing an IV formulation (Laurain et al.
2012). This chapter is organized as follows. Section 6.1 provides a general intro-
duction to the considered problem, whereas the mathematical formulation of the
problem is presented in Section 6.2 together with the considered model structure.
In Section 6.3, the problem of identifying LPV-IO models from data formulated
in the RKHS setting is presented. The resulting l2 regularized estimator is modi-
fied to include an `1 regularization term in Section 6.4, to enforce sparsity in the
estimated model by detecting which coefficient functions are relevant. The re-
sulting elastic-net function estimation problem is analyzed in the RKHS setting,
proving the model structure selection capability of the method. In Section 6.5, the
presented approach is compared to exiting solutions in terms of a detailed simu-
lation study and also experimentally on the LPV identification of an unbalanced
DC drive. Finally, the conclusions are presented in Section 6.6.

6.2 Problem Formulation

6.2.1 Data-generating system

To capture the IO relationship of a given LPV data-generating system S , see Sec-
tion 5.2.2, the so-called LPV-IO model is considered, which is commonly defined
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in a filter form. In the SISO1 case, the process dynamics of S, according to (5.4a),
are defined as

y̆(t) = −
no

a∑
i=1

ao
i (p(t))q−iy̆(t) +

no
b∑

j=qo

bo
j (p(t))q−ju(t), (6.1)

where u : Z → R, y̆ : Z → R are the measured input and noiseless output signals
of the system, qo ≥ 0 is the delay in the input channel, p : Z → P is the so-called
scheduling variable, which ranges in a compact set P ⊂ RnP and assumed to be
known exactly, ao

i and bo
j are coefficient functions dependent on p(t), which are

assumed to be smooth and bounded on P.

For clarity of the exposition, in this chapter we assume that ao
i (p(t)) and bo

j (p(t))
have a static dependence2 on p, i.e., ao

i (p(t)) and bo
j (p(t)) depend only on the in-

stantaneous value of p at time t.

The most simple noise setting to be considered with the LPV process model
(6.1) is the ARX form:

y(t) = −
no

a∑
i=1

ao
i (p(t))q−iy(t) +

no
b∑

j=qo

bo
j (p(t))q−ju(t) + eo(t), (6.2)

where y : Z→ R is the output and eo(t) is a zero-mean white noise. According to
(5.4) this means that D0 = A0, while C0 = 1.

In order to simplify the notation, we will often use the following compact form
to represent the data-generating LPV system (6.2):

y(t) = fo(xo(t), p(t)) + eo(t) =
no

ab∑
i=1

foi (p(t))xo
i (t) + eo(t), (6.3)

where no
ab = no

a + no
b − qo + 1 and xo

i (t) is the i-th component of the vector

xo(t) =
[
y(t− 1) · · · y(t− no

a) u(t− qo) · · · u(t− no
b)
]>
. (6.4)

The following model structure is used to estimate (6.2)

y(t) = −
na∑
i=1

ai(p(t))q−iy(t) +
nb∑
j=q

bj(p(t))q−ju(t) + e(t), (6.5)

where e(t) denotes the residual term, na, nb, qo ≥ q ≥ 0 and not necessarily equal
with no

a, no
b, qo. Similarly to (6.3), the model (6.5) will often be represented in the

1For the sake of simplicity, in this chapter we assume a SISO system, however, the MIMO can be
handled as has been introduced in Chapter 5.

2If ao
i and bo

j have a dynamic dependence on p, i.e., they depend on the past values of the scheduling
signal p(t), p(t−1), . . ., the following discussion can be easily extended for that case as has been shown
in Chapter 5.
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following compact form:

y(t) = f(x(t), p(t)) + e(t) =
nab∑
i=1

fi(p(t))xi(t) + e(t), (6.6)

where nab = na + nb − q + 1 and xi(t) is the i-th component of the vector

x(t) =
[
y(t− 1) · · · y(t− na) u(t− q) · · · u(t− nb)

]>
. (6.7)

6.2.2 Problem statement

Our goal is to jointly reconstruct the scheduling variable dependencies and the
model structure, i.e., model order, number of effective coefficient functions, delay,
etc., directly from data. To this end, based on a finite record of input, output and
scheduling parameter measurements, i.e., DN = {u(t), y(t), p(t)}Nt=1, our goal is
to tackle the following problems:

E1 Enforce sparsity in the estimate of the functions ai(p(t)), i = 1, . . . , na, and
bj(p(t)), j = q , . . . , nb. In this way, the model that is “best suited” for the
approximation of the underlying system is chosen directly from the data;

E2 Estimate the possibly nonlinear functions ai(p(t)) and bi(p(t)), characteriz-
ing the estimated relationship, directly from data;

In the following, an RKHS estimator to tackle the above-mentioned problems, i.e.,
E1-E2, is presented.

6.3 RKHS estimator for LPV-IO models

In Chapter 3, we have discussed in depth kernel-based methods to estimate an un-
known nonlinear function from data. These methods can be treated in a unified
framework in terms of regularization in RKHS. The main issue that needs to be
taken into account to have a successful identification process based on such tech-
niques is the design of a suitable kernel function that encodes our priori knowl-
edge about the unknown function. As we have discussed, a kernel function should
be parameterized in terms of a few number of parameters, the so-called hyperpa-
rameters, and in the same time should offer a wide representation capability of
the expected behavior. The design of a suitable kernel function for the considered
model class, i.e., LPV-IO model, will be the topic of Subsection 6.3.1. Moreover, in
Subsection 6.3.2, the presented approach will be used to tackle Goal E2, where an
RKHS estimator together with the designed kernel function is used to reconstruct
the structural dependency, i.e., the coefficient functions ai(p(t)) and bi(p(t)) from
data. This will show the potential of the RKHS estimator to provide, under some
conditions, an analytic solution to this problem by employing the well-known
Representer Theorem, see Theorem 3.1 in Chapter 3.
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6.3.1 Kernel choice for LPV-IO models

It has been discussed how the choice of kernel K equivalently defines a func-
tional Hilbert space, i.e., an RKHS HK , and therefore a model class. In the con-
sidered LPV identification problem, given the model structure (6.6), the aim is to
find a kernel K that is able to embed a function f(x, p) with a specific structure
f(x, p) =

∑nab
i=1 fi(p)xi. Naturally, such a Hilbert space is not unique. For example

any Hilbert space embedding functions of type
∑nab
i=1 fi(p)πi(xi) with πi a poly-

nomial function would also embed f(x, p). Nevertheless, it is important, just like
in usual identification problems, to enforce a structure in HK which represents f
with the least possible degrees of freedom to achieve better performance. It be-
comes then crucial to define a reproducing kernel K which accounts for the linear
dependency of LPV models on the terms xi.

Lemma 6.1 (Reproducing kernel for LPV-IO models) Given the LPV-IO structure
f(x, p) in (6.6), the function f(x, p) is embedded in the RKHS HK , whose reproducing
kernel K : Rnab+nP × Rnab+nP → R is defined as:

K
(
(x, p), (x′, p′)

)
=

nab∑
i=1

xiKi(p, p′)x′i, (6.8)

where each sub-kernel Ki(p, p′) : RnP × RnP → R defines an RKHS HKi embedding
fi(p) : RnP → R.

Proof: It is well-known that the RKHS Li embedding linear functions for vari-
able xi ∈ R is defined by 1-dimensional kernels L(xi, x′i) : R × R → R that are
equal to xix

′
i. Let Ki(p, p′) : RnP × RnP → R define an RKHS HKi embedding

fi(p). Thanks to the Aronszajn Theorem on RKHS products (Aronszajn 1950) (see
Appendix A.3.2), the function fi(p)xi is embedded in the RKHS product HKi⊗Li,
where ⊗ denotes the direct product. Then, by using the Aronszajn Theorem (Aron-
szajn 1950) on RKHS sums (see Appendix A.3.1), it follows directly that f(x, p) is
embedded in the RKHS given by:

HK =
nab∑
i=1

HKi ⊗ Li, (6.9)

and that the associated kernel defined in (6.8) reproduces HK , which ends the
proof. �

It should be noted that, for the choice of the kernelsKi any positive definite kernel,
e.g., linear, polynomial, rational, spline or wavelet kernels, can be used. Choosing
the appropriate kernel highly depends on the problem at hand. More details on
that topic can be found in Schölkopf and Smola (2002). For the LPV case, RBFs
are typically chosen as kernels to describe the expected structural dependency on
p. Such a choice is motivated by the fact that the coefficient functions ai(p(t)) and
bi(p(t)) are assumed to be, in general, nonlinear and smooth functions and RBFs
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are proven to perform well in these situations. See (3.14) of Chapter 3 for the exact
definition of the RBF kernel.

6.3.2 Estimation of the coefficient functions from data

It is interesting to notice that in general, the operation HK1 ⊗ HK2 embeds all
products between functions f1 of HK1 and f2 of HK2 . After estimating such a
product though, it is not possible to deduce directly the value of f1(x) and f2(x)
separately. Nevertheless, in the LPV context, thanks to the linear nature of Li,
it becomes possible to get a direct estimation of each of the functions fi(p), as
described in Lemma 6.2. However, before presenting that Lemma, it is convenient
to review the Representer Theorem from Chapter 3 and define the corresponding
cost function in the considered situation of this chapter.

The main idea of regularization, when it is applied to the problem of identify-
ing f in (6.6) from a set of measurements {ut, pt, yt}Nt=1, is to have a loss function V

that consists of two terms, i.e., a “data-fit” term denoted by C and a “regularizer”
term denoted by R forming

V(f) = C
(
u1, p1, y1, f(x1, p1), . . . , uN , pN , yN , f(xN , pN )

)
+ γR

(
‖f‖K

)
, (6.10)

where x is defined in (6.7) and γ > 0 is the regularization parameter which defines
the trade-off between both contradicting terms. For the “data-fit” term, the use of
a quadratic loss function is common, for example in the considered PEM setting.
For the “regularizer”, since HK is a Hilbert space, a mathematically rigorous and
elegant analysis of regularization methods is possible. In such a case, a typical
regularizer is the squared norm in the Hilbert space, Hence, the most popular
choices of C and R in the regression literature are:

C
(
u1, p1, y1, f(x1, p1), . . . , uN , pN , yN , f(xN , pN )

)
=

N∑
t=1

(
y(t)− f(xt, pt)

)2
R(‖f‖K) = ‖f‖2K .

(6.11)

Now, let us present the generalized representer theorem (Argyriou and Dinuzzo
2014; Schölkopf et al. 2001).

Theorem 6.1 (Generalized Representer Theorem) For a given RKHS HK with re-
producing kernel K

(
(x, p), (x′, p′)

)
, the minimizer of (6.10) for any positive C and any

strictly monotonically increasing real-valued function R on [0,∞), can be represented as

f̂(x′, p′) =
N∑
k=1

ckK
(
(xk, pk), (x′, p′)

)
. (6.12)

The Representer Theorem indicates that using the regularized optimization cri-
terion (6.10), the estimated function f can be expressed as a finite sum of kernel
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slices/sections centered on the available observations and computed at any point
using the associated kernel.

In case C and R are chosen as in (6.11), the parameters c = [c1 · · · cN ]> ∈ RN

defining the estimated function f̂ in (6.12) and minimizing the cost function V(f)
in (6.10) can be directly computed analytically as follows:

c = (K + γIN)−1YN , (6.13)

where YN = [y1 · · · yN ]>, and K is the kernel matrix whose (i, j)-th entry is
K
(
(xi, pi), (xj , pj)

)
. Now, we can proceed with the Lemma that describes how

the coefficient functions can be reconstructed from data.

Lemma 6.2 (Estimating the coefficient functions) Let f(x, p) be embedded in an
RKHS HK with reproducing kernel K as in (6.8). If f(x, p) has a representer f(x′, p′) =∑N
k=1 ckK

(
(xk, pk), (x′, p′)

)
, then each subfunction fi(p′) of f(x′, p′) is represented as

fi(p′) =
N∑
k=1

ckxkiKi(pk, p′). (6.14)

Proof: Consider the computation of f at a given point f(x′, p′). Then, let x′ be the
specific point xØi ∈ Rnab , which is defined such that each of its component xØi

j ,
i = 1, . . . , nab, j = 1, . . . , nab is given as

xØi
j = δij (6.15)

In other words, xØi contains only 0 except at its i-th component which is equal to
1. It becomes then clear that f(xØi , p′) =

∑nab
j=1 fj(p′)x

Øi
j = fi(p′). In other words,

the computation of the subfunction fi(p′) can be expressed as the computation of
f at a specific point [xØi , p′]. Hence, given the representer

f(x′, p′) =
N∑
k=1

ckK
(
(xk, pk), (x′, p′)

)
,

it can be easily seen that K
(
(xk, pk), (xØi , p′)

)
= xkiKi(pk, p′) to end the proof. �

Based on the results in Lemma (6.2), the problem of estimating the coefficient
functions fi(p) has been formulated in the general framework of the RKHS theory.

It is interesting to note that, by using an optimization criterion defined by
choices for C and R as in (6.11), the estimation results obtained confirm the re-
sults previously obtained in Tóth et al. (2011b) from the LS-SVM and in Golabi
et al. (2014) from the GP viewpoints.



144 Chapter 6 Model Structure Learning for LPV-IO Identification

6.4 LPV-IO model order selection

In this section, we extend the results presented in Section 6.3 to select the LPV
model structure, defined in terms of the parameters na, nb and delay q , directly
from data. In particular, the main goal of this section is to enforce sparsity in the
estimate of the function f(x, p), i.e., Goal E1, where “enforce sparsity” should be
read as “keep the number of nonzero functions fi(p) in (6.6) small”. Such infor-
mation, i.e., detecting the nonzero coefficient functions, can be used to determine
the LPV model structure.

To this end, a regularization term that complements the traditional expression
(6.10) is added. More specifically, the new cost function consists of three terms:

1. The “data-fit” term
∑N
t=1
(
y(t) − f(x(t), p(t))

)2 that aims at fitting the mea-
sured data;

2. The “regularizer” term ‖f‖2K is employed to prevent overfitting;

3. A “sparsity” term, which is introduced to enforce sparsity in the estimate of
the model. More specifically, this regularization term aims at shrinking the
functions fi to the zero function in order to minimize the number of non-zero
coefficient functions fi characterizing the chosen LPV model structure.

The “sparsity” term that we propose is
∥∥‖f1‖∞ . . . ‖fnab‖∞

∥∥
1, where ‖ · ‖1 is a con-

vex approximation of the `0-pseudo norm3 and ‖fi‖∞ gives the maximum abso-
lute value of the function fi over P. However, in practice, the infinity norm would
require the computation of fi(p) at each point of P which is computationally infea-
sible. Instead, an approximation of the infinity norms ||fi(p)||∞ as the maximum
absolute value of the function fi over nχ points of the scheduling variable domain
P, can be employed

J i = max
j=1,...,nχ

|fi(mj)| .

The set of nχ nodes can be chosen among the measured points or simply as a ran-
domly generated points belonging to P without loss of generality. Hereafter, we
will refer to these points as nodes of P. Nevertheless, the difference between the
infinity norm and the proposed approximation scheme is expected to be small if
the kernels Ki enforce a sufficient smoothness on fi(p) with respect to the spacing
in the chosen gridding points. As a result of such an approximation, the “sparsity”
term can be expressed as ∥∥∥∥[ J 1 · · · J nab

]∥∥∥∥
1
.

To conclude, the new cost function can be written as:

V(f) =
N∑
t=1

(
y(t)− f(x(t), p(t))

)2 + γ‖f‖2K + γs

∥∥∥∥[ J 1 · · · J nab

]∥∥∥∥
1
, (6.16)

3The `0-pseudo norm of a vector x characterizes the support of that vector, i.e., the number of
nonzero elements. Minimization under a `0 objective is a nonconvex NP-hard problem.



6.4 LPV-IO model order selection 145

where γs > 0 is the hyperparameter controlling the effect of the new regularization
term, {mj}

nχ
j=1 is a set of (randomly generated) points belonging to the scheduling

variable space P ⊆ RnP . Thus, the estimation of the LPV model f(x, p) in (6.6) can
be formulated as the optimization problem:

min
f

N∑
t=1

(
y(t)− f(x(t), p(t))

)2 + γ‖f||2K + γs

∥∥∥∥[ J 1 · · · J nab

]∥∥∥∥
1

s.t.
J i = max

j=1,...,nχ
|fi(mj)| .

(6.17)

In order to produce an estimate of the function f minimizing (6.17), it is important
to derive a suitable representer of f in the form of the following Theorem.

Theorem 6.2 (Representer Theorem for sparse LPV-IO models) Let HK be an
RKHS embedding LPV-IO models (6.6) with K

(
(x, p), (x′, p′)

)
in the form of (6.8), as

the reproducing kernel with kernel slice4 K(x,p). Then the minimizer of (6.17) can be
expressed as a representer in the form:

f̂(·) =
N∑
k=1

ckK(xk,pk)(·) +
nab∑
i=1

 nχ∑
j=1

cijK(xØi ,mj)(·)

 , (6.18)

or equivalently

f̂(x′, p′) =
N∑
k=1

ckK
(
(xk, pk), (x′, p′)

)
+

nab∑
i=1

 nχ∑
j=1

cijKi (mj , p′)x′
 , (6.19)

where xØi is as in (6.15).

Proof: Our goal is to express the optimization criterion (6.16) in the form of (6.10)
suited for applying the generalized Representer Theorem, Theorem 6.1. The cost
function V(f) in (6.16) can be split into two parts V(f) = Vdata(f) + Vf(f) with

Vdata(f) =
N∑
t=1

(
yt − f(xt, pt)

)2 + γs

∥∥∥∥[ J 1 . . . J nab

]∥∥∥∥
1

(6.20)

s.t. J i = max
j=1,...,nχ

|fi(mj)| .

and
Vf(f) = γ‖f‖2K (6.21)

It is then clear that Vdata(f) corresponds to a positive cost function of the following
type C ((f(xt, pt), xt, pt), fi(mj)), with t = 1, . . . , N , i = 1, . . . , nab, j = 1, . . . , nχ.
Note that this function depends on the underlying coefficient functions fi, while,

4The kernel slice/section is K(x,p)(·) = K((x, p), ·), which is a real-valued function whose value
at a given (x′, p′) is K((x, p), (x′, p′)).
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in order to apply the generalized Representer Theorem, the function C needs to
depend on f.

In the same fashion as in Lemma 6.2, it is sufficient to notice that due to the
linear structure, fi(mj) = f(xØi ,mj). Hence, Vdata(f) can be written as a generic
function in the form :

Vdata(f) =C
(
(f(xt, pt), xt, pt), (f(xØi ,mj), xØi ,mj)

)
,

with t = 1, . . . , N, i = 1, . . . , nab, j = 1, . . . , nχ.
(6.22)

Vf(f) is already in the form of an increasing function of ‖f‖K . Consequently, (6.17)
is now clearly expressed as an optimization criterion in the form of (6.10) which al-
lows direct application of the Representer Theorem, resulting in (6.18). In order to
prove (6.19), it is sufficient to notice thatK(xØi ,mj)(x

′, p′) = K
(
(xØi ,mj), (x′, p′)

)
=

Ki (mj , p′)x′. �

It is worth to emphasize that (6.18) and (6.19) are equivalent. While equation (6.19)
is useful in order to compute the value of f at a new given point, equation (6.18)
allows the derivation of ‖f‖K .

It is important to notice that in the expression of the representer the c coeffi-
cients are a consequence of the added constraint term for sparsity. The cost func-
tion Vdata(f) in (6.20) does not only depend on the measured points (xt, pt) but
also on the gridding points (xØi ,mj) which have been introduced for solving the
order selection problem. Interestingly, even in the case mj = pt, the ci terms can-
not be removed and are needed to enforce the regularization separately on each
coefficient function fi.

Having defined an optimization criterion, an LPV kernel structure as well as
a representer for the problem at hand, the order selection problem can now be
defined as follows:

Order selection problem: Consider a data set DN = {u(t), y(t), p(t)}Nt=1 mea-
sured from a data-generating system as expressed in (6.2) and a set of nodes
{m1, . . .mnχ}. Using the representer (6.18), with K defined in (6.8), estimate the
associated coefficients {ck}, k = 1, . . . , N and {cij}, i = 1, . . . , nab, j = 1, . . . , nχ
which minimize (6.17).

The solution to this problem corresponds to a quadratic optimization prob-
lem. It can be solved using any optimization toolbox. For the sake of readability,
the matricial quadratic optimization expression of (6.17) is reported in details in
Laurain et al. (2017).

Using the provided representer, due to the linear part of the kernel, each coef-
ficient function fi(p′), i = 1, . . . , nab can be computed at a given point by applying
(6.19) and then computing the value of f as f(xØi , p′) = fi(p′), which reads as:

fi(p′) =
N∑
k=1

ckxkiKi(pk, p′) +
nχ∑
j=1

cijKi(mj , p′). (6.23)
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Note that, because of the `1-penalty term γs
∥∥[ J 1 · · · J nab

]∥∥
1 introduced in (6.16)

to shrink the coefficient functions ai and bj to zero, the resulting estimates of ai
and bj will be biased. To cope with that, a two-step procedure is employed to
estimate the nonzero coefficient functions. More specifically, first, a Sparse-RKHS
(S-RKHS) approach, i.e., by minimizing the objective function V(f) in (6.16) with
γs > 0, should be used to select which coefficients play a role in the dynamic
relation of the full model (6.5). Now, assume that the indices of the detected zero
functions ai and bj are collected in the index sets Iy and Iu, respectively, i.e., ai,
for i ∈ Iy and bj , for j ∈ Iu are detected to be zero functions. As a second step,
the zero coefficient functions are discarded in the description of the LPV model
(6.27) and a lower-complexity LPV model is considered

y(t) = −
na∑

i=1,i6∈Iy

ai(p(t))q−iy(t) +
nb∑

j=q,j 6∈Iu

bj(p(t))q−ju(t) + e(t). (6.24)

Then, the model (6.24) is re-identified with the LPV RKHS approach, i.e., by min-
imizing the objective function V(f) in (6.16) with γs = 0.

6.5 Case studies

The effectiveness of the developed RKHS approach is shown in this section on two
case studies. The first one is a Monte-Carlo study based on a simulation example.
The second example is an experimental case study addressing the identification
of a DC motor with an unbalanced disc acting as a position dependent load.

6.5.1 Simulation example

As a simulation example, we consider the identification of an LPV system with a
sparse dynamic relation using an overparameterized LPV-IO model.

Data-generating system

The LPV data-generating system is a Multi-Input Single-Output (MISO) system de-
scribed by the difference equation

yt = ao
1(pt)yt−1 + bo

1,15(pt)u1t−15 + ao
2,4(pt)u2t−4 + bo

2,5(pt)u2t−5 + eo(t), (6.25)

where eo(t) is a white noise process with Gaussian distributionN
(
0, σ2

e
)

and stan-
dard deviation σe = 0.3. The coefficient functions ao

1(pt), bo
1,15(pt), bo

2,4(pt) and



148 Chapter 6 Model Structure Learning for LPV-IO Identification

bo
2,5(pt) are described by the nonlinear maps:

ao
1(pt) = 0.9p3

t , (6.26a)

bo
1,15(pt) = 2sin(2πpt)

2πpt
, (6.26b)

bo
2,4(pt) =

 −1 if pt > 0.5;
−2pt if − 0.5 ≤ pt ≤ 0.5;

1 if pt < −0.5,
(6.26c)

bo
2,5(pt) = 2p2

t . (6.26d)

The system is estimated from a data set DN = {u1t, u2t, yt, pt}Nt=1 with N = 600
input, output, and scheduling variable measurements. To gather data, the input
u1 and the scheduling signal have been chosen to be white-noise sequences, in-
dependent of each other, both of them with uniform distribution U(−1, 1). The
second input u2 is a white noise process with Gaussian distribution N

(
0, σ2

u,2
)

and standard deviation σu,2 = 1. In order to provide representative results, a
Monte-Carlo simulation of NMC = 50 runs is performed. At each run, new real-
izations of the noise, inputs and scheduling signal are considered. The average of
the SNR over the Monte-Carlo simulation is equal to 13dB.

LPV model structure

The identification problem is formulated in the considered RKHS setting by using
an overparameterized LPV model structure:

yt =
na∑
i=1

ai(pt)yt−i +
nb,1∑
j=1

b1,j(pt)u1t−j +
nb,2∑
j=1

b2,j(pt)u2t−j + e(t). (6.27)

with na = 20, nb,1 = 20 and nb,2 = 20. According to the RKHS identification
setting considered in this chapter, the dependence of the functions ai(pt), b1,j(pt)
and b2,j(pt) on the scheduling signal p is not specified.

Coefficient functions estimation and model order selection

For the sake of comparison, the LPV model (6.27) is identified first through the
RKHS estimator given in Section 6.3 (or equivalently, minimizing V(f) in (6.16) for
γs = 0). The RBF kernels are used for the kernels Ki, i.e.,

Ki(p, p′) = exp
(
− (p− p′)2

βw
2
i

)
.
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The values of the hyperparameters γ (6.16) and βwi are chosen through CV5, that
is by maximizing (with an exhaustive grid search) the BFR w.r.t. the simulated
model response with a validation data set of length NV = 200. Furthermore, in
order to simplify the tuning of the hyperparameters βwi, the same value of βwi is
set for all kernels Ki. The obtained values of γ and βwi are γ = 1 and βwi = 0.7
for all i. The estimates of the functions a1, b1,15, b2,4 and b2,5 (representing the
non-zero coefficients of the true data-generating system (6.25)) are reported in the
left parts of Figure 6.1-6.4, where the mean of the estimated functions over the 50
Monte-Carlo runs is plotted together with the standard deviation.

As a second step, the LPV model structure is selected through the S-RKHS
approach described in Section 6.4, thus minimizing the multi-criteria objective
function V(f) in (6.16), for γs > 0. The interval P = [−1, 1] is gridded into nχ = 11
equidistant nodes mj . Similar to the first situation, the RBF kernels Ki are used,
and the values of the hyperparameters γ, γs and βwi are tuned through CV and
set equal to γ = 0.01, γs = 0.3 and βwi = 0.7 for all i.

The maximum absolute values ai, b1,j and b2,j of the coefficients functions
ai(pt), b1,j(pt) and b2,j(pt) estimated via the RKHS estimator (i.e., with γs = 0)
and its sparse version are reported in Tables 6.1-6.6, which show the average and
the standard deviation of ai, b1,j and b2,j over the 50 Monte-Carlo runs. It is
important to highlight that ai, b1,j and b2,j are the maximum of |ai(�)|, |b1,j(�)| and
|b2,j(�)| over the whole interval P = [−1, 1], and not only over the chosen nodes.
Results in Tables 6.1-6.6 show that the S-RKHS approach correctly detects the LPV
model structure. In fact, the only coefficient functions with an (average) maximum
absolute value greater than a threshold of 10−2 are a1, b1,15, b2,4 and b2,5, which are
the nonzero coefficient functions defining the considered data-generating system
in (6.25). It is also worth remarking that the true coefficient structure of the system
is detected in 47 out of 50 Monte-Carlo runs, while in the other 3 runs, 5 nonzero
functions were detected instead of 4.

Estimation of the nonzero coefficient functions

As it can be noticed from Tables 6.1-6.6, the estimated maximum values of |a1(�)|,
|b1,2(�)|, |b2,4(�)| and |b2,5(�)| over the interval P are 0.27, 0.12, 0.67 and 0.75, re-
spectively, while the corresponding true values are 0.9, 2, 1 and 2. This agrees
with the discussion in Section 6.4 that the estimated coefficient functions will be
biased due to the added `1-term to the cost function. Therefore, the two-step pro-
cedure presented in Section 6.4 is followed, where the coefficient functions with
maximum absolute value smaller than a threshold of 10−2 are discarded and the
remaining functions are re-estimated. The estimates of the nonzero coefficient
functions a1(�), b1,15(�), b2,4(�) and b2,5(�) are plotted in the right parts of Figure
6.1-6.4, which show the mean estimate together with the standard deviation in-
tervals computed over the 50 Monte-Carlo runs. The obtained results show that
the nonlinear coefficient functions a1, b1,15, b2,4 and b2,5 are accurately estimated,

5Alternatively, an efficient approach to tune the unknown hyperparameters is to resort to the
Bayesian interpretation of the considered approach, where maximizing the marginal likelihood can
be utilized.
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Figure 6.1: Example 1: coefficient functions a1(p(t)): (left part) estimate via the
RKHS estimator; (right part) estimate after model order selection. True function
(solid black line), mean estimate (solid blue line) and the standard deviation in-
tervals (dashed red line) over the 50 Monte Carlo runs.
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Figure 6.2: Example 1: coefficient functions b1,15(p(t)): (left part) estimate via the
RKHS estimator; (right part) estimate after model order selection. True function
(solid black line), mean estimate (solid blue line) and the standard deviation in-
tervals (dashed red line) over the 50 Monte Carlo runs.



6.5 Case studies 151

−1 −0.5 0 0.5 1

−1

0

1

p

b
2,

4
(p

)

−1 −0.5 0 0.5 1

−1

0

1

p
b

2,
4
(p

)

Figure 6.3: Example 1: coefficient functions b2,4(p(t)): (left part) estimate via the
RKHS estimator; (right part) estimate after model order selection. True function
(solid black line), mean estimate (solid blue line) and the standard deviation in-
tervals (dashed red line) over the 50 Monte Carlo runs.
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Figure 6.4: Example 1: coefficient functions b2,5(p(t)): (left part) estimate via the
RKHS estimator; (right part) estimate after model order selection. True function
(solid black line), mean estimate (solid blue line) and the standard deviation in-
tervals (dashed red line) over the 50 Monte Carlo runs.
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Table 6.1: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value ai of the coefficients functions ai(pt), i =
1, . . . , 10. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
a1 0.9 7.4 · 10−1 2.7 · 10−1 5.7 · 10−2 0.7 · 10−1

a2 0 7.4 · 10−2 4.0 · 10−4 3.1 · 10−2 7.0 · 10−4

a3 0 7.6 · 10−2 5.0 · 10−4 3.7 · 10−2 6.0 · 10−4

a4 0 7.1 · 10−2 3.0 · 10−4 2.8 · 10−2 2.0 · 10−4

a5 0 7.6 · 10−2 3.0 · 10−4 3.8 · 10−2 2.0 · 10−4

a6 0 7.7 · 10−2 4.0 · 10−4 3.6 · 10−2 6.0 · 10−4

a7 0 7.4 · 10−2 4.0 · 10−4 3.0 · 10−2 5.0 · 10−4

a8 0 7.0 · 10−2 4.0 · 10−4 2.8 · 10−2 4.0 · 10−4

a9 0 8.3 · 10−2 8.0 · 10−4 3.5 · 10−2 2.2 · 10−3

a10 0 7.6 · 10−2 7.0 · 10−4 3.5 · 10−2 2.0 · 10−3

Table 6.2: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value ai of the coefficients functions ai(pt), i =
11, . . . , 20. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
a11 0 7.9 · 10−2 3.8 · 10−4 3.4 · 10−2 4.0 · 10−4

a12 0 6.8 · 10−2 3.9 · 10−4 3.0 · 10−2 5.0 · 10−4

a13 0 7.3 · 10−2 4.1 · 10−4 3.0 · 10−2 6.0 · 10−4

a14 0 8.4 · 10−2 2.9 · 10−4 3.4 · 10−2 2.0 · 10−4

a15 0 8.0 · 10−2 7.2 · 10−4 3.2 · 10−2 2.5 · 10−3

a16 0 6.3 · 10−2 4.5 · 10−4 3.5 · 10−2 6.0 · 10−4

a17 0 7.4 · 10−2 4.6 · 10−4 3.2 · 10−2 7.0 · 10−4

a18 0 6.8 · 10−2 3.4 · 10−4 3.3 · 10−2 3.0 · 10−4

a19 0 6.8 · 10−2 3.5 · 10−4 3.2 · 10−2 3.0 · 10−4

a20 0 6.4 · 10−2 3.7 · 10−4 3.1 · 10−2 5.0 · 10−4

Table 6.3: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value b1,i of the coefficients functions b1,i(pt),
i = 1, . . . , 10. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
b1,1 0 1.2 · 10−1 1.0 · 10−4 4.0 · 10−2 1.0 · 10−4

b1,2 0 1.3 · 10−1 1.0 · 10−4 5.1 · 10−2 1.0 · 10−4

b1,3 0 1.3 · 10−1 1.0 · 10−4 5.0 · 10−2 1.0 · 10−4

b1,4 0 1.2 · 10−1 1.0 · 10−4 4.0 · 10−2 1.0 · 10−4

b1,5 0 1.2 · 10−1 1.0 · 10−4 4.9 · 10−2 1.0 · 10−4

b1,6 0 1.1 · 10−1 2.0 · 10−4 4.5 · 10−2 1.0 · 10−4

b1,7 0 1.2 · 10−1 1.0 · 10−4 4.0 · 10−2 1.0 · 10−4

b1,8 0 1.3 · 10−1 1.0 · 10−4 5.8 · 10−2 1.0 · 10−4

b1,9 0 1.4 · 10−1 1.0 · 10−4 5.5 · 10−2 1.0 · 10−4

b1,10 0 1.2 · 10−1 2.0 · 10−4 5.1 · 10−2 1.0 · 10−4
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Table 6.4: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value b1,i of the coefficients functions b1,i(pt),
i = 11, . . . , 20. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
b1,11 0 1.2 · 10−1 1.0 · 10−4 5.6 · 10−2 1.0 · 10−4

b1,12 0 1.2 · 10−1 1.0 · 10−4 5.2 · 10−2 1.0 · 10−4

b1,13 0 1.3 · 10−1 2.0 · 10−4 5.6 · 10−2 1.0 · 10−4

b1,14 0 1.3 · 10−1 1.0 · 10−4 5.5 · 10−2 1.0 · 10−4

b1,15 2 1.72 1.2 · 10−1 5.6 · 10−2 3.5 · 10−2

b1,16 0 1.3 · 10−1 2.0 · 10−4 5.5 · 10−2 2.0 · 10−4

b1,17 0 1.2 · 10−1 1.0 · 10−4 4.3 · 10−2 1.0 · 10−4

b1,18 0 1.3 · 10−1 1.0 · 10−4 5.3 · 10−2 1.0 · 10−4

b1,19 0 1.3 · 10−1 2.0 · 10−4 4.8 · 10−2 1.0 · 10−4

b1,20 0 1.2 · 10−1 2.0 · 10−4 4.3 · 10−2 2.0 · 10−4

Table 6.5: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value b2,i of the coefficients functions b2,i(pt),
i = 1, . . . , 10. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
b2,1 0 9.8 · 10−2 2.0 · 10−4 4.4 · 10−2 2.0 · 10−4

b2,2 0 8.8 · 10−2 2.0 · 10−4 3.8 · 10−2 1.0 · 10−4

b2,3 0 8.6 · 10−2 2.0 · 10−4 4.1 · 10−2 1.0 · 10−4

b2,4 1 1.05 6.7 · 10−1 3.7 · 10−2 3.9 · 10−2

b2,5 2 1.63 7.5 · 10−1 6.4 · 10−2 5.2 · 10−2

b2,6 0 1.1 · 10−1 1.2 · 10−3 4.8 · 10−2 1.2 · 10−3

b2,7 0 9.7 · 10−2 2.0 · 10−4 4.6 · 10−2 2.0 · 10−4

b2,8 0 8.4 · 10−2 2.0 · 10−4 4.1 · 10−2 1.0 · 10−4

b2,9 0 9.6 · 10−2 2.0 · 10−4 4.2 · 10−2 1.0 · 10−4

b2,10 0 9.7 · 10−2 2.0 · 10−4 3.2 · 10−2 2.0 · 10−4

Table 6.6: Example 1: average and standard deviation (over the 50 Monte-Carlo
runs) of the maximum absolute value b2,i of the coefficients functions b2,i(pt),
i = 11, . . . , 20. Comparison between the RKHS and S-RKHS estimators.

True Mean (RKHS) Mean (S-RKHS) Std (RKHS) Std (S-RKHS)
b2,11 0 2.0 · 10−4 4.4 · 10−2 4.4 · 10−2 1.0 · 10−4

b2,12 0 9.4 · 10−2 2.0 · 10−4 4.7 · 10−2 1.0 · 10−4

b2,13 0 8.9 · 10−2 2.0 · 10−4 3.1 · 10−2 1.0 · 10−4

b2,14 0 9.6 · 10−2 2.0 · 10−4 3.5 · 10−2 1.0 · 10−4

b2,15 0 9.4 · 10−2 2.0 · 10−4 3.7 · 10−2 2.0 · 10−4

b2,16 0 9.6 · 10−2 2.0 · 10−4 3.3 · 10−2 1.0 · 10−4

b2,17 0 9.2 · 10−2 2.0 · 10−4 3.3 · 10−2 2.0 · 10−4

b2,18 0 8.7 · 10−2 2.0 · 10−4 3.7 · 10−2 1.0 · 10−4

b2,19 0 9.0 · 10−2 2.0 · 10−4 3.8 · 10−2 2.0 · 10−4

b2,20 0 9.4 · 10−2 2.0 · 10−4 4.6 · 10−2 2.0 · 10−4
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with a lower variance with respect to the RKHS estimator. The boxplots of the
BFR on the validation dataset (used neither for training nor to tune the hyper-
parameters γ, γs and βwi) obtained with the regularized and RKHS approach are
also computed and reported in Figure 6.5. The obtained results clearly indicate
that, thanks to an accurate reconstruction of the LPV model structure, the regular-
ized method leads to higher BFR than the RKHS approach.

S-RKHS RKHS

70

80
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100

Identification method

BF
R

[%
]

Figure 6.5: Example 1: boxplot of the Monte-Carlo simulation for the BFR ob-
tained with the Sparse-RKHS (left) and standard RKHS (right) estimators.

6.5.2 Experimental example

As a second example, we consider an experimental study addressing the identifi-
cation of a DC motor with an unbalanced disc shown in Figure 6.6. The motor has
an additional mass, which is mounted on the disc attached to the rotor to make
the mass distribution inhomogeneous, thus introducing nonlinear dynamics. The
parameters characterizing the DC motor are reported in Table 6.7.

Figure 6.6: Example 2: DC motor with an unbalanced disc used as an experimen-
tal testbed.
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Table 6.7: Example 2: physical parameters of the DC motor (Kulcsár et al. 2009).
Description Value
Motor resistance 9.5 Ω
Motor inductance 0.84 · 10−3 H
Motor torque constant 53.64 · 10−3 N m/A
complete disc inertia 2.2 · 10−4 N m2

Friction coefficient 6.6 · 10−5 N m s/rad
Additional mass 0.07 kg
Mass distance from the center 0.042 m

Identification setting

The goal is to estimate a model describing the relationship between the input volt-
age u [V] over the motor armature and the angular position y [rad] of the disc. To
this aim, these variables are measured at a sampling time of 0.02 s, and a dataset
with 500 samples is constructed. The first N = 300 samples are used to identify
the model and tune the hyperparameters γ, γs and βwi involved in the proposed
RKHS based identification method, while the remaining 200 samples are used to
assess the quality of the estimated model. The input voltage is chosen as a white
noise sequence with uniform distribution in the interval [−8, 8] V, filtered by a first
order digital filter with a cutoff frequency of 1.6 Hz (the generated sequence of the
input voltage u and of the angular position y of the disc are plotted in Fig. 6.7).

In formulating the RKHS identification method discussed in this chapter, the
following LPV model structure is used:

yt =
na∑
i=1

ai(pt−1)yt−i +
nb∑
j=1

bj(pt−1)ut−j + et, (6.28)

with na = 15 and nb = 15. The output yt (namely, the angular position of the disc)
is used as a scheduling variable (i.e., pt = yt).

Identification results

The S-RKHS approach in Section 6.4 is used to identify the model (6.28), i.e., by
minimizing (6.16) with the kernels Ki chosen as RBF kernels. The values of the
hyperparameters, tuned through CV, are set to γ = 0.01, γs = 0.05 and βwi = 6 for
all i. The threshold is taken to be 10−2. The two-stage approach is used, where first
the optimization (6.16) is solved for γs = 0.05, then the coefficient functions with
maximum absolute values smaller than 10−2 are discarded and a reduced order
model is re-estimated with the RKHS approach, i.e., with γs = 0. The identified
model is tested on the validation data set and a BFR of 88.16% is achieved. The
true and the simulated outputs are plotted in Figure 6.8. The obtained results
show the capability of the presented approach to accurately estimate the nonlinear
dynamics of a real system from a relatively short data record.
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Figure 6.7: Example 2: input voltage u (upper plot) and angular position y of the
disc (lower plot) used for the identification and validation of the DC motor with
an unbalanced disc.
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Figure 6.8: Example 2: true output (solid) vs. simulated model output (dashed)
on a validation dataset.
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6.6 Summary

In this chapter, Subgoal 4 has been addressed. More specifically, a unified frame-
work in the RKHS setting for model structure learning of LPV-IO models has been
formulated. In such a setting, kernel based methods, e.g., LS-SVM and GP, can be
easily embedded. First, the problem has been formulated to estimate the coeffi-
cient functions from data. In addition to formulating a kernel function that is able
to generate an RKHS that embeds the considered model structure, the utilized cost
function has been modified to tackle the problem of model order selection from
data by complementing it with a third term that enforces sparsity in the estimated
coefficient functions. This provides an automatic way for learning structure of
LPV-IO models from data. The effectiveness of the presented framework is tested
on both simulation and experimental examples.
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7 CHAPTER

Conclusions and Recommendations

In this thesis, we have aimed at utilizing new developments in system
identification stemming from the machine learning community to ad-

dress the open problems and associated challenges with data-driven mod-
eling of Linear Dynamic Systems (LDS). This chapter provides the main
conclusions of the presented research throughout the thesis. In addition,
suggestions and research directions for future work are also given.

7.1 Conclusions

This thesis has been motivated by our interest to deliver accurate linear models
of physical processes. These models include Linear Time Invariant (LTI) models
and their extensions, e.g., Linear Time Varying (LTV) and Linear Parameter Varying
(LPV) models. Such advanced linear models have proven to be capable of de-
scribing both Nonlinear (NL) and Time-Varying (TV) nature of physical systems. A
lot of work has been done to tackle the associated challenges and problems with
identifying these models. More specifically, the choice of the “right” structure and
order of the model to be estimated from data to “best” describe the behavior of
the considered process. Often we characterize performance in terms of the pre-
diction error of the estimated models. By utilizing approaches borrowed from the
machine learning community, many of the present problems have been circum-
vented. However, there are still many open questions to be addressed.

Based on the extensive literature overview that have been presented in Chap-
ter 1, we have established two research questions to be answered as our primary
research goal. Accordingly several subgoals have been formulated in Section 1.7,
which had to be investigated to fulfill/answer the research questions.

In the following, we summarize the results of our investigations towards the
considered subgoals.
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Subgoal 1: Systematic utilization of prior knowledge

In the scope of our first research goal, we have investigated how to systematically
construct kernel functions that are capable of describing a wide range of dynamic
properties of LTI systems, e.g., stability, resonance behavior, damping, etc., both
in the time- and frequency-domain. We have presented a class of kernel function
that is based on Orthonormal Basis Functions (OBFs), where the prior knowledge
can be encoded via the generating poles of the utilized OBFs.

To have a data-driven approach to decide on both the choice of the appro-
priate set of OBFs to be used and the effective number of these basis functions, a
decay term has been introduced in the kernel construction. Such a decay term also
guarantees that the resulting hypothesis spaces, i.e., the Reproducing Kernel Hilbert
Spaces (RKHSs) associated with these kernel functions, are stable. More specif-
ically, in the time- and frequency-domain, these hypothesis spaces contain only
impulse responses and Frequency Response Functions (FRFs) of stable LTI systems,
respectively.

It has been shown that by designing kernel functions that are supported by sys-
tem theory, the capability of the kernel to encode a wide range of dynamic proper-
ties has been significantly improved. In the same time, such a representation capa-
bility can be achieved with a simple parameterization, where the unknown hyper-
parameters can be efficiently estimated by maximizing the marginal likelihood.
Such an improvement in the kernel structure results in a better bias/variance
trade-off compared to the previously used kernel functions that focus only on
encoding smoothness and stability. Accordingly, the obtained estimates become
more accurate in terms of minimizing the Mean Squared Error (MSE).

Subgoal 2: Bayesian PEM identification of LPV systems

In the scope of our second research goal, we have investigated how to cope with
the issues associated with identifying LPV systems under a Prediction Error Mini-
mization (PEM) setting, specifically, in case of general noise scenarios, i.e., an LPV-
Box Jenkins (BJ) noise model structure. It has been shown that nonparametric iden-
tification within Bayesian setting provides a powerful tool to “efficiently” tackle
these problems, e.g., the parameterization of the coefficient functions, model or-
der and noise structure selection. As an extension of the LTI case, identification of
LPV-BJ models has been formulated as obtaining nonparametric estimates of the
one-step-ahead predictors of such models. It has been shown that the one-step-
ahead predictor can be written as a summation of two sub-predictors associated
with the input and output signals, which can be modeled as asymptotically stable
Infinite Impulse Representations (IIRs). To account for all related aspects of these
IIRs, specifically, the structure of dependency on the so-called scheduling signal p
and the asymptotic stability, these IIRs are completely identified in a nonparamet-
ric sense: not only the coefficient functions are estimated as functions, but also the
whole time evolution of the impulse response w.r.t. the scheduling signal.

To this end, it has been shown that in the Bayesian setting, the one-step-ahead
predictor can be seen as a multi argument function and a statistical prior is pos-
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tulated on it. Specifically, the prior of the one-step-ahead predictor is taken to
be a zero-mean Gaussian random field, which can be completely characterized
by its covariance/kernel function. A suitable kernel function has been designed
that encodes the prior knowledge about the to-be-estimated function, i.e., the one-
step-ahead predictor. Such a kernel function is a multidimensional Gaussian ker-
nel that incorporates information on both possible structural dependency and the
stability of the predictor.

Subgoal 3: Identification of series-expansion LPV models

Using the developed approach to identify LPV-BJ models within the Bayesian set-
ting, where the associated sub-predictors of such models have been considered as
convergent IIRs, the extension of Bayesian identification of LPV series-expansion
models has become straightforward. More specifically, the identification of both
LPV-IIR and LPV-OBFs model structures can be regarded as function estimation
problem and hence the presented approach for Subgoal 2 can be extended to the
considered case in Subgoal 3. Within Bayesian setting, the associated problems
with identifying LPV series-expansion models has been tackled, e.g., parameter-
izing the coefficient functions and guaranteeing the convergence of the estimated
series. Moreover, for LPV-OBFs models, the problem of selecting a proper set of
OBFs from data has been dealt with by considering the generating poles of the
utilized basis functions as hyperparameters and estimating them with maximiz-
ing the marginal likelihood. This can be seen also as an LPV extension of the
Regularized OBFs approach that has been presented in Chapter 4 for LTI systems.

Subgoal 4: Model structure learning of LPV models

In the scope of our final research goal, we have investigated how to jointly re-
construct the scheduling-variable dependencies and the model order (coefficient
structure) directly from data, with no prior parameterization of the p-dependent
functions. More specifically, it has been shown that this problem can be formu-
lated in the RKHS setting, where various regularization techniques can be em-
bedded. In such a setting, the model estimate is the solution of an optimization
problem that minimizes a three-term cost function. These three terms are the data-
fit, the regularizer and the sparsity terms. The main goal of such a cost function
is to obtain nonparametric estimates of the significant coefficient functions, where
these functions are detected via the sparsity term that shrinks the insignificant co-
efficient functions to be “almost” zero. To this end, a suitable kernel function has
been designed that embeds the considered LPV-IO models. Such a kernel function
results in an RKHS that is used as a hypothesis space, where the model estimate
is searched for.

Based on the above discussion, it can be concluded that the developed ap-
proaches of this thesis provide answers to the primary research questions: syn-
thesis of kernel functions for linear models which are backed up by system theory
to represent dynamic properties; extension of the promising Bayesian methods to
advanced linear models, where open questions with nonparametric estimation in
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a general noise setting, circumventing model structure selection problems have
been addressed.

7.2 Recommendations for Future Research

This section recommends some research directions for future work as a continua-
tion of the presented results. The suggestions are as follows:

• In Chapter 6, model structure learning of LPV-IO models has been formu-
lated in the RKHS framework. Tuning the unknown parameters that in-
clude: the parameters that control the trade-off between various contradict-
ing terms in the cost functions; the hyperparameters that parameterize the
kernel functions, has been performed using Cross Validation (CV), which re-
quires an additional validation data set. The resulting bias/variance trade-
off and accordingly the accuracy of the estimated models are largely depen-
dent on the tuned parameters. Hence, an efficient alternative of CV that does
not need a a validation data set and can automatically balance bias/trade-off
is needed. This requires the formulation of the problem of model structure
learning of LPV-IO models from a Bayesian point of view under sparsity
penalties, where maximizing the marginal likelihood can be employed to
tune the unknown hyperparameters.

• In this thesis, nonparametric models of LPV systems have been obtained
from data. However, the utilization of such models in control design is not
investigated. Further research in that direction includes:

– Based on the identified nonparametric models realize parametric mod-
els that can be used in the available LPV model-based control design
methods;

– Investigate a possible LPV control design method that can directly make
use of the obtained nonparametric estimates, e.g., in a model predictive
setting.

• In Chapter 4, kernel functions have been synthesized for LTI systems both
in time- and frequency-domain based on OBFs. Furthermore, it has been
shown how the resulting kernels provide a systematic approach to encode
the expected dynamic properties of LTI systems. In order to extend such an
approach to LPV systems, i.e., to construct kernel function based on OBFs
that results in an RKHS that embed LPV systems, it is interesting to inves-
tigate if such orthonormal basis functions can be defined in a parameter-
varying sense. Such a concept requires the full analysis of the properties
of such basis, the resulting RKHS and the systems that can be embedded
within such a setting. This would provide a full extension of the results of
Chapter 4 to the LPV case.



A APPENDIX

Proofs

In this appendix, the proofs of the theories and lemmas of this thesis
are presented. The proofs relay heavily on the notation and concepts

introduced in the previous chapters.

A.1 Proof of Proposition 2.1

By following the same line of reasoning as in Wahlberg (1991): the L∞(J)-norm of
the k-th Takenaka-Malmquist basis ψ̆k is uniformly bounded

sup
ω

∣∣∣∣∣
√

1− |λk|2
ejω − λk

k−1∏
i=1

1− λ∗i ejω

ejω − λi

∣∣∣∣∣ ≤
√

1− |λk|2
1− |λk|

.

Based on the fact that the `1(N)-norm of the impulse response of a k-th order
stable system is less than twice the nuclear norm of the associated Hankel oper-
ator (Glover et al. 1988, Section 2), and that nuclear norm is less than k times the
L∞(J)-norm (Glover et al. 1988, Theorem 2.1):

‖ψk‖`1 ≤ k2
√

1− |λk|2
1− |λk|

.

Let

κ = sup
λ∈{λk}∞k=1

√
1− |λ|2
1− |λ| .

Accordingly,

‖ψk‖`1 ≤ k · 2κ.
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A.2 Proof of Proposition 4.3

The proof can be accomplished by the application of Corollary 4.1, see (4.25) and
Proposition 2.1. From Corollary 4.1, one have to check that:

∞∑
i=1

∞∑
j=1
|Ks

Ψ(i, j)| =
∞∑
i=1

∞∑
j=1
|
∞∑
k=1

Dk (βd)ψk(i)ψk(j)| <∞.

To this end:
∞∑
i=1

∞∑
j=1
|
∞∑
k=1

Dk (βd)ψk(i)ψk(j)|

≤
∞∑
i=1

∞∑
j=1

∞∑
k=1

Dk (βd) |ψk(i)||ψk(j)|

=
∞∑
k=1

Dk (βd)
∞∑
i=1

∞∑
j=1
|ψk(i)||ψk(j)|

=
∞∑
k=1

Dk (βd)
∞∑
i=1
|ψk(i)|︸ ︷︷ ︸

‖ψk‖`1(N)

∞∑
j=1
|ψk(j)|︸ ︷︷ ︸

‖ψk‖`1(N)

≤ 4κ2
∞∑
k=1

k2Dk (βd) ,

where the last equation is obtained by the provided bound in Proposition 2.1.
Hence,

∑∞
k=1 k

2Dk (βd) < ∞ should be satisfied to guarantee the stability of the
kernel.

In case of (4.41):
∑∞
k=1 k

2Dk (βd) =
∑∞
k=1 k

(2−βd), and with βd > 3, the series
will have a convergent sum, which guarantees the stability of the kernel.

In case of (4.42):
∑∞
k=1 k

2Dk (βd) =
∑∞
k=1 k

2β−kd , and with βd > 1, the series
will have a convergent sum, which guarantees the stability of the kernel.

A.3 Aronszajn’s Theorems (Aronszajn 1950)

A.3.1 Sum of kernels

If Ki(x, x′) is the reproducing kernel of the RKHS HKi with the norm ‖ � ‖Ki , then
K(x, x′) =

∑n
i=1Ki(x, x′) is the reproducing kernel of the RKHS HK containing

all functions f =
∑n
i=1 fi with fi ∈ HKi and with the norm defined by ‖f‖2K =

min
[∑n

i=1 ‖fi‖2Ki
]
, the minimum taken for all the decompositions f =

∑n
i=1 fi

with fi ∈ HKi . If all HKi are disjoint, and therefore do not include any common
functions beside 0, then the norm in HK is simply given by

∑n
i=1 ‖fi‖2Ki .
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A.3.2 Product of kernels

The direct product of RKHS HK1 ⊗ HK2 defined by the reproducing kernels
K1(x1, x

′
1) and K2(x2, x

′
2) and the norms ‖ � ‖K1 and ‖ � ‖K2 is an RKHS HK

defined by the reproducing kernel K
(
(x1, x

′
1), (x2, x

′
2)
)

= K1(x1, x
′
1)K2(x2, x

′
2)

with the norm ‖{f1, f2}‖K = ‖f1‖2K1
‖f2||2K2

. HK embeds all functions of type
f(x1, x2) =

∑n
i=1 f

(i)
1 (x1)f(i)2 (x2) with f

(i)
1 (x1) ∈HK1 and f

(i)
2 (x2) ∈HK2 .
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B APPENDIX

Description of the data generating
system utilized in Section 5.3.5

In this appendix, we give the exact coefficient function matrices ao
i , b

o
j

of the LPV process model utilized in Section 5.3.5, together with the
coefficient function matrices coi , d

o
j of the considered noise dynamics, i.e.,

the corresponding full BJ model.

B.1 Coefficient functions of the process dynamics

bo
0(p, t) =

[
1− exp(−0.6p1(t)) 0.64− 0.72 exp(0.7p1(t))

0.3− 0.4p2
1(t) + 0.5p2(t) 0.2 + 0.98 tan−1(0.66p2(t))

]
(B.1a)

bo
1(p, t) =

[
0.24− 0.32p2

1(t) + 0.4p2(t− 1) 0.22 exp(0.4p1(t− 1))
0.16 + 0.9 tan−1(0.63p2(t)) 0.22− 0.5p2

1(t) + 0.45p2(t− 1)

]
(B.1b)

bo
2(p, t) =

[
0.16 + 0.64 tan−1(0.8p2(t− 2)) 0.14 + 0.7 tan−1(0.6p2(t− 2))
0.64− 0.64 exp(−0.6p1(t− 1)) 0.17− 0.32p2

1(t) + 0.32p2(t− 1)

]
(B.1c)

ao
1(p, t) =

[
0.2 + 0.12p2

2(t− 1) 0
0 0.2 + 0.35 tan−1(p1(t)) cos(p1(t− 1))

]
(B.1d)

ao
2(p, t) =

[
0.19 + 0.15 tan−1(p1(t− 1)) cos(p2(t− 2)) 0

0 0.17 + 0.11p2
2(t− 1)

]
.

(B.1e)
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B.2 Coefficient functions of the noise dynamics

do
1(p, t) =

[
0.3 + 0.3

√
|(p1(t))| 0

0 0.45 + 0.45 sin(p2(t))

]
(B.2a)

do
2(p, t) =

[
0.34 + 0.34 sin(p2(t− 1)) 0

0 0.23 + 0.23
√
|p1(t− 2)|

]
(B.2b)

co1(p, t) =
[

0.3 + 0.45p3
1(t) + 0.3p2

1(t− 1) 0
0 0.3 + 0.45p2

2(t− 1)

]
(B.2c)

co2(p, t) =
[

0.24 + 0.36p2
1(t− 1) 0

0 0.24 + 0.36p3
2(t− 2) + 0.24p2

2(t− 1)

]
. (B.2d)
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