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Abstract— In the literature methods have been proposed
which enable consistent estimates of modules embedded in
complex dynamic networks. In this paper the network extension
of the so called closed-loop Direct Method is investigated.
Currently, for this method the variables which must be included
in the predictor model are not considered as a user choice. In
this paper it is shown that there is some freedom as to which
variables to include in the predictor model as inputs, and still
obtain consistent estimates of the module of interest. Conditions
on this choice of predictor inputs are presented.

I. INTRODUCTION

Obtaining models of complex dynamic networks from
data is becoming an increasingly important area of research.
In many fields of science and engineering such as power
systems, biological systems, flexible mechanical structures,
economic systems, etc., it is becoming possible to collect
data at various locations, or of different variables that have
dynamic interrelations (i.e. form a dynamic network).

A dynamic network consists of modules that are embedded
according to an interconnection structure [1]. There is a
significant number of applications where the interconnection
structure of the network is a priori known. For example
in power systems or flexible mechanical structures, the
interconnections between measurement locations are known,
however the dynamics of the interconnections are unknown.
To estimate the dynamics of a particular module in the
network it is necessary to collect data that is generated by
the network by taking measurements of various variables in
the network.

Although it may be possible to take measurements at many
different locations in the network, it may be expensive or
inconvenient to do so. Therefore, it may be attractive to use
the minimum number of required measurement locations in
order to identify a particular module embedded in a network.
Secondly, it may be unsafe, or practically unfeasable to
measure some variables in the network. Therefore it would
be preferable if it is not neccesary to measure these variables
in order to obtain estimates of the dynamics of interest.

The question addressed in this paper is: given a dynamic
network with known interconnection structure, which vari-
ables must be included as inputs in the predictor model in
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order to guarantee that it is possible to obtain consistent
estimates of a particular module of interest that is embedded
in the network? Conditions are presented that the set of
predictor inputs must satisfy. In this paper the conditions are
derived for the Direct Prediction-Error Method as described
in [2], [3].

This problem could also be interpreted as determining
which variables should be measured (where should sensors
be placed) in order to obtain consistent estimates of a
particular module in the network. By this interpretation,
conditions on the sensor placement scheme are presented
such that the Direct Method results in consistent estimates
of the module of interest.

There is a growing interest in dynamic network identifica-
tion, including the case where the interconnection structure
is not known a priori ([4], [5], [6], [7], [3] and references
therein). If the interconnection structure is not known, then
all variables must be included as predictor inputs (no choices
based on the interconnection structure can be made). Suppose
the interconnection structure is known, then it becomes
possible to choose the set of predictor inputs which is optimal
in some sense.

The results of this paper are complementary to the results
in [8] where the conditions were derived that the predictor
inputs must satisfy when using the Two-Stage Prediction-
Error Method. The advantage of the method described in
this paper, compared with [8] is that an external reference
signal is not required. Moreover, the results presented in this
paper are strict generalizations of the results in [2], [3].

In Section II the background material is presented, Sec-
tion III contains the main result and Section IV contains
algorithms to check the conditions.

II. BACKGROUND

In this section first the dynamic networks considered in
this paper are formally defined, then the prediction-error
framework and Direct Method are briefly presented, and
finally some definitions from graph theory are presented.

A. Dynamic Networks and Problem Setup

The networks considered in this paper are built up of
L elements, related to L scalar internal variables wj , j =
1, . . . , L. It is assumed that each internal variable is such
that it can be written as:

wj(t) =
∑
i∈Nj

G0
ji(q)wi(t) + rj(t) + vj(t) (1)

with G0
jk a proper rational transfer function,, q is the delay

operator (i.e. q−1u(t) = u(t− 1)), and
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• Nj is the set of indices of node variables with direct
causal connections to wj , i.e. i ∈ Nj if G0

ji 6= 0,
• vj is an unmeasured disturbance term that is a real-

ization of a stationary stochastic process with rational
spectral density: vj = H0

j (q)ej where ej is a white
noise process, and H0

j is a monic, stable, and minimum
phase filter, and

• rj is a external excitation term that is known to the user.

It may be that the disturbance term and/or external excitation
term is not present at some nodes. The sets of all indices of
the external excitation terms and disturbance terms that are
present are denoted R and V respectively. All the internal
variables can be written in one equation as:
w1

w2

...
wL

 =


0 G0

12 · · · G0
1L

G0
21 0

. . . G0
2L

...
. . . . . .

...
G0
L1 G0

L2 · · · 0



w1

w2

...
wL

+


r1
r2
...
rL

+


v1
v2
...
vL


= G0w + r +H0e (2)

where, if an external excitation signal is not present at node
i then the ith entry of r is 0.

A path from wi → wj will be understood to mean that
there are transfer functions such that Gjn1Gn1n2 · · ·Gnki is
non-zero. A loop is a path from wj → wj .

A directed graph of the network can be constructed:

1. Let all wk, k = {1, . . . , L} be nodes.
2. Let all vk, k ∈ V and rm, m ∈ R be nodes.
3. For all i, j ∈ {1, . . . , L} if Gji 6= 0, then include a

directed edge from node wi to node wj .
4. For all k ∈ V add a directed edge from vk to wk.
5. For all k ∈ R add a directed edge from vk to wk.

To characterize the suitability of the equations (2) in
describing a physical system, the property of well-posedness
is used [9]. The dynamic networks considered are assumed
to satisfy the following general conditions.

Assumption 1:

(a) The network is well-posed in the sense that all minors
of limz→∞(I −G0(z)) are non-zero. 1

(b) (I −G0)−1 is stable.
(c) All rm, m ∈ R are uncorrelated to all vk, k ∈ V .2

B. Prediction Error Identification

The prediction-error framework is an identification frame-
work that is based on the one-step-ahead predictor model.
See [10] for a detailed description and analysis.

Let wj denote the variable which is to be predicted. Let
wk, k ∈ Dj and rk, k ∈ Pj denote the predictor inputs

1This condition is adopted from [9] and imposes weak restrictions
on allowable feed-through terms in the network but still allows for the
occurrence of algebraic loops. Moreover, it ensures that both G0 and
(I −G0)−1 only contain proper transfer functions

2Throughout this paper r uncorrelated to v will mean that the cross-
correlation function Rrv(τ) is zero for all τ .

(the set of internal and external variables that will be used
to predict wj). The one-step-ahead predictor for wj is [10]:

ŵj(t|t− 1, θ)=
∑
k∈Dj

H−1
j (q, θ)Gjk(q, θ)wk(t)

+
∑
k∈Pj

H−1
j (q, θ)Fjk(q, θ)rk(t)+

(
1−H−1

j (q, θ)
)
wj(t). (3)

where Hj(q, θ) is the noise model and Fjk(q, θ) models the
dynamics between rk, k ∈ Pj and wj . From (1) if Dj =
Nj , then Pj should be chosen as {j}, and Fjj(q, θ) = 1.
Although currently a parameterization including Fjk(θ) may
seem to add unnecessary complexity to the predictor, the
importance will become apparent later in the paper. Note
that this is a multi-input, single-output (MISO) predictor. The
prediction error is:

εj(t, θ) = wj(t)− ŵj(t|t− 1, θ)

= Hj(θ)−1
(
wj −

∑
k∈Dj

Gjk(θ)wk −
∑
k∈Pj

Fjk(θ)rk
)

(4)

where arguments q and t have been dropped for notational
clarity. The unknown parameters, θ, are estimated by mini-
mizing the sum of squared (prediction) errors (SSE):

Vj(θ) =
1
N

N−1∑
t=0

ε2j (t, θ). (5)

where N is the data length. Under standard (weak) assump-
tions the estimated parameter vector θ̂N converges in the
number of data N as [10]

θ̂N → θ∗ with probability 1 as N →∞.
where

θ∗ = arg min
θ

Ē[ε2j (t, θ)] and Ē := lim
N→∞

1
N

N−1∑
t=0

E,

and E is the expected value operator. The function Ē[ε2j (t, θ)]
is denoted V̄j(θ). If Gjk(q, θ∗) = G0

jk the module transfer
is said to be estimated consistently.

C. Direct Method

As in identification in closed-loops, identification in net-
works may that the problem that the “output” disturbance
vj is correlated to the predictor inputs wk, k ∈ Dj . In
the closed-loop identification literature several methods have
been developed to deal with this problem [11]. One of
those methods is the Direct Method which is defined by the
following algorithm.

Algorithm 1: Direct Method.
1. Choose a set of internal and external variables to include

as inputs to the predictor (i.e. choose Dj and Pj).
2. Construct the predictor (3).
3. Obtain estimates Gjk(q, θ∗) by minimizing the sum of

squared prediction errors (5).
Step 1 of the algorithm is usually an implicit choice depen-
dent on the network structure [2], [4]. However, in this paper
it is explicitly considered a user choice.
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The main idea behind the Direct Method as presented in
[2] is that if (a) there is a delay in every loop in the network,
and (b) the noise vj can be exactly whitened to ej , and (c) Dj
is chosen as Nj , then the estimates obtained using Algorithm
1 are consistent estimates of G0

jk, k ∈ Nj . Formally, the
proposition that is proved in [2] is as follows.

Proposition 1: Consider a dynamic network as defined in
Section II-C that satisfies Assumption 1. Consistent estimates
of G0

ji, i ∈ Nj can be obtained using Algorithm 1 if the
following conditions are satisfied:
(a) For both the network and the parameterized model, every

loop wj → wj has a delay.
(b) Dj = Nj , Pj = {j}.
(c) vj is present and uncorrelated to vk, k ∈ V \ j
(d) The power spectral density of [wj rj wn1 · · · wnn ]T ,

n∗ ∈ Nj is positive definite for all ω ∈ [−π, π].
(e) The data generating system (2) is in the set of possible

models, i.e. there exists a θ0 such that Gji(θ0) = G0
ji,

i ∈ Nj , Fjj(θ0) = 1, and Hj(θ0) = H0
j .

Notice that all transfer functions Gjk, k ∈ Nj are
consistently estimated. However, the objective was to only
obtain consistent estimates of G0

ji. As is shown in this paper,
Condition (b) can be made less restrictive, with the result that
only G0

ji is estimated consistently, and no guarantees are
made about the other transfer functions that are estimated.

D. Some Useful Results From Graph Theory

A graph G is made up of nodes which are interconnected
by edges. The set of nodes of G is denoted V (G).

Definition 1 (A-B path): Given a directed graph G and
sets of nodes A and B. Denote the nodes in the graph xi.
A path P = x0x1 · · ·xk, where the xi are all distinct, is an
A-B path if V (P )∩A = {x0}, and V (P )∩B = {xk} [12].

Definition 2 (A-B Separating Set): Consider a directed
graph G. Given A,B ⊂ V (G), a set X ⊆ V (G) is an A-B
separating set if the removal of the nodes in X results in a
graph with no A-B paths [12].

Lemma 1: Consider a directed graph with adjacency ma-
trix A. Then for k ≥ 1, the (j, i)th entry Ak is zero if there
is no path of length k from i→ j. [12]

III. PREDICTOR INPUT SELECTION

In this section conditions are presented that the set of
predictor inputs must satisfy to allow a consistent estimate
of G0

ji using Algorithm 1. This enables the user to choose a
set of variables from a given data set such that the conditions
are satisfied. Equivalently, it enables the user to place sensors
in order to collect the required data.

First a property of dynamic networks is investigated. Then,
some properties of the noise terms are discussed. Both these
properties lead up to the statement of the main result.

A. Network Property

A property of the network equations is that wj can be
expressed in many ways using different sets of internal
variables.

w5

w1

w4

w6

w2

w3

v1 v2

v3v4

v5 v6

(a)

w5

w1 w2

w3

ṽ1 ṽ2

ṽ3

ṽ5

(b)
Fig. 1. Graphs of the networks in Examples 1 and 2.

Example 1: Consider the network described by:
w1

w2

w3

w4

w5

w6

=


0 G0

12 0 G0
14 0 0

G0
21 0 G0

23 G0
24 0 G0

26

0 G0
32 0 0 0 0

0 0 G0
43 0 0 0

G0
51 0 0 0 0 0
0 0 0 0 G0

65 0




w1

w2

w3

w4

w5

w6

+


v1
v2
v3
v4
v5
v6


A graph of the network is shown in Figure 1. The variable
w2 can be expressed in terms of w1, w4, and w6:

w2= G0
21w1 +G0

24w4 +G0
26w6 + v2, (6)

or in terms of w1, w3, and w5:

w2=G0
21w1+G0

24G
0
43w3+G0

26G
0
65w5+G0

24v4+G0
26v6+v2,

or in terms of w1 and w4:

w2=(G0
21+G

0
26G

0
65G

0
51)w1+G0

24w4+G0
26G

0
65v5+G0

26v6+v2

or in terms of w1 and w5

w2=
1

1−G0
24G

0
43G

0
32

(
G0

21w1 +G0
26G

0
65w5 +G0

24v4

+G0
24G

0
43v3 +G0

26v6 + v2

)
. �

Let Dj denote the set of indices of internal variables which
are chosen to describe wj since this will end up being the
same set Dj in (3) (in Example 1 for (6) Dj = {1, 4, 6}).
From the example, it can be seen that for different sets Dj ,
the transfer functions between the variables also change. In
other words, the transfer function between w1 and w2 is not
a constant, but depends on the choice of Dj . Note that only
proper mappings from wk → wj , k ∈ Dj are considered.
This phenomenon was also investigated in [8].

For a general network, wj can be causally expressed in
terms of wk, k ∈ Dj using the following notation and
equations. Let Zj denote the set of indices k, such that
k /∈ {j} ∪ Dj . Let Zj denote the set of indices k, such that
k /∈ {j} ∪ Dj . Let wD denote the vector [wk1 wk2 · · · ]T ,
k∗ ∈ Dj . Let rD denote the vector [rk1 rk2 · · · ]T , k∗ ∈ Dj ,
where the `th entry is zero if r` is not present in the
network (i.e. ` /∈ R). The vectors wZ , vD, vZ and rZ are
defined analogously. The ordering of the elements of wD,
vD, and rD is not important, as long as it is the same for
all these vectors (the same holds for wZ , vZ , and rZ). The
transfer function matrix between wD and wj is denoted G0

jD.
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The other transfer function matrices are defined analogously.
Using this notation, the network equations (2) arewjwD

wZ

 =

 0 G0
jD G0

jZ

G0
Dj G0

DD G0
DZ

G0
Zj G0

ZD G0
ZZ

wjwD
wZ

+

vjvD
vZ

+

rjrD
rZ

 ,
The variables wZ can be eliminated from the equations:[
wj
wD

]
=
[

0 G0
jD

G0
Dj G0

DD

][
wj
wD

]
+
[
G0
jZ

G0
DZ

]
(I −G0

ZZ)−1
[
G0
Zj G

0
ZD

][wj
wD

]
+
[
G0
jZ

G0
DZ

]
(I −G0

ZZ)−1(vZ + rZ) +
[
vj + rj
vD + rD

]

=

[
Ğ0
jj Ğ0

jD

Ğ0
Zj Ğ0

DD

][
wj
wD

]
+
[
I 0 Ğ0

jZ

0 I Ğ0
DZ

]vj + rj
vD + rD
vZ + rZ

 . (7)

where a new notation is introduced in the second equality.
Note that by Assumption 1a the inverse (I −G0

ZZ)−1 exists,
and that all transfers in the last line are proper (causal).
Lastly, the diagonal entries of Ğ0 must be removed. Let
D0
DD = diag(G0

DD). Then:[
wj
wD

]
=
[
Ğ0
jj

D0
DD

]−1([
0 Ğ0

jD

Ğ0
Zj Ğ0

DD −D0
DD

][
wj
wD

]

+
[
I 0 Ğ0

jZ

0 I Ğ0
DZ

]vj + rj
vD + rD
vZ + rZ

) (8)

Consequently, wj has been causally expressed in terms of
wk, k ∈ Dj , vk, k ∈ V and rk, k ∈ R as desired.

From (7) the stochastic terms of each wk, k ∈ Dj are:[
ṽj
ṽD

]
=
[
I 0 G̃0

jZ

0 I G̃0
DZ

]vjvD
vZ

 . (9)

The properties of ṽ play an important role in the formulation
of the main result. The power spectral density of ṽ is

Φṽ(Dj)=
[
Φvj + G̃0

jZΦvZ G̃
0∗

jZ G̃0
jZΦvZ G̃

0∗

DZ

G̃0
DZΦvZ G̃

0∗

jZ ΦvD + G̃0
DZΦvZ G̃

0∗

DZ

]
(10)

where ∗ denotes complex conjugate and Φvj , ΦvZ and ΦvD
are the power spectral densities of vj , vZ and vD respectively.
If each vk, k ∈ V is assumed to be uncorrelated to each other,
then Φv is diagonal. However, this does not imply Φṽ(Dj)
is diagonal. In summary, combining (8) and (9):[
wj
wD

]
=
[

0 G̃0
jD

G̃0
Dj G̃0

DD

] [
wj
wD

]
+
[
G̃0
jZ

G̃0
DZ

]
rZ +

[
ṽj + rj
ṽD + rD

]
(11)

where again a new notation has been introduced, and ṽ has
power spectral density (10) and it should be emphasized that
the transfer functions (11) are functions of Dj . The relation
between (2) and (11) are illustrated in the following example.

Example 2: Consider the network of Example 1. Choose
Dj = {1, 3, 5}, then (11) becomes:
w2

w1

w3

w5

=


0 G0
21G

0
23+G

0
24G

0
43 G

0
26G

0
65

G0
21 0 G0

14G
0
43 0

G0
32 0 0 0

0 G0
51 0 0



w2

w1

w3

w5

+


ṽ2
ṽ1
ṽ3
ṽ5

 (12)

where

Φṽ=

2664
|H0

2 |2+|G0
24H

0
4 |2+|G0

26H
0
6 |2 G0

24|H0
4 |2G0∗

14 0 0

G0
14|H4|2G0∗

24 |H0
1 |2+|G0

14H
0
4 |2 0 0

0 0 |H0
3 |2 0

0 0 0 |H0
5 |2

3775
The graph of (12) is shown in Fig. 1b. When comparing the
graphs of Fig 1a and b, note that in Fig. 1b the vertices w4

and w6 have been removed, and edges coming in and out of
those nodes have been reconnected. �

In the next section it is shown how the idea that (11) can
be obtained from (2) is linked to predictor input selection.

B. Predictor Input Selection

In order to be able to identify G0
ji, the term must become

explicit somewhere in the expression for wj . For instance,
suppose that for the network shown in Example 1 the transfer
G0

21 is to be estimated. The expression G0
21 only appears as

the relationship between w1 and w2 for Dj = {1, 4, 6} and
{1, 3, 5}. The following proposition presents conditions that
Dj must satisfy in order to ensure that the transfer function
between wi and wj is G0

ji.
Proposition 2: Consider a dynamic network as defined

in Section (II-A) that satisfies Assumption 1. The transfer
function G̃ji(q,Dj) = G0

ji(q) if the following conditions on
Dj are satisfied:
(a) i ∈ Dj , j /∈ Dj ,
(b) every loop wj → wj passes through a node wk, k ∈ Dj .
(c) every path wi → wj excluding the path G0

ji passes
through a node wk, k ∈ Dj , �

Before proceeding to the proof, note that all conditions are
satisfied in Example 1 for the first two sets Dj = {1, 4, 6}
and {1, 3, 5}. For the third choice, Dj = {1, 4}, Condition
(c) is not satisfied since the path w1 → w5 → w6 → w2 does
not pass through any nodes in Dj . For the last set Dj =
{1, 5}, Condition (b) is not satisfied since there is a path
w2 → w2 which does not pass through any nodes in Dj .

The following lemma is used in the proof of Proposition
2. It is proved in [2], or can be proved using Mason’s rules.

Lemma 2: Consider a dynamic network with transfer ma-
trix G0 that satisfies all conditions of Assumption 1. Let
G0
mn be the (m,n)th entry of (I − G0)−1. If there is no

path from wn to wm then G0
mn = 0. �

Next proceed with the proof of Proposition 2.
Proof: From (8) and (11),

G̃0
ji(q,Dj) =

1
1− Ğ0

jj(q,Dj)
Ğ0
ji(q,Dj)

The following reasoning will show how Conditions (c) -
(b) ensure that Ğ0

ji(q,Dj) = G0
ji(q) and Ğ0

jj(q,Dj) = 0,
resulting in G̃0

ji(q,Dj) = G0
ji(q).

Consider first the term G̃0
jj(q,Dj). From (7):

Ğ0
jj=G0

jZ(I−G0
ZZ)−1G0

Zj=
∑
k1∈Zj

∑
k2∈Zj

G0
jk1G

0
k1k2G

0
k2j (13)

where G0
k1k2

is the (k1, k2) entry of (I−G0
ZZ)−1. By Lemma

2 if there is no path wk2 → wk1 that passes only through
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nodes wk, k ∈ Zj , then the transfer Gk1k2 is zero. By
Condition (b) there is no path wj → wj that passes only
through nodes wk, k ∈ Zj . Thus at least one of Gjk1 ,
Gk1k2 , or Gk2j in (13) is equal to zero for each k1, k2 ∈ Zj .
Therefore, Ğjj(q,Dj) = 0.

From (7) the expression for Ğ0
ji(q,Dj) is:

Ğ0
ji=G0

ji +G0
jZ(I−G0

ZZ)−1G0
Zi (14)

By the same reasoning it follows that by Condition (c) the
second term in (14) is 0, and thus, Ğ0

ji = G0
ji as desired.

Suppose a set Dj is chosen such that it satisfies the
conditions of Proposition 2. If the variables wk, k ∈ Dj
are included as inputs to the predictor (3) would Algorithm
1 result in consistent estimates of G0

ji? Unfortunately, not
always. The problem lies in the fact that the fundamental
assumptions guaranteeing consistency of estimates in Algo-
rithm 1 may be violated in (11).

In the following text, first the fundamental mechanism that
assures consistent estimates using Algorithm 1 is stated.

Proposition 3: Consider a dynamic network as defined in
Section II-A that satisfies Assumption 1. Algorithm 1 leads
to consistent estimates if there exists an Hj(θ∗) such that
(a) H−1

j (θ∗)ṽj(t) is white, and
(b) Ē

[
H−1j (q,θ∗)ṽj(t)·∆Gjk(q,θ,Dj)wk(t)

]
=0,∀k ∈ Dj ,

and for all θ, where ∆Gjk(q, θ,Dj) = G̃0
jk(q,Dj) −

Gjk(q, θ). �
The full proof can be extracted from the reasoning in [3],
[2]. However, consider the following sketch. In light of (11)
the prediction error (4) can be expressed as:

εj(θ) = H−1
j (θ)

(∑
k∈Dj

∆Gjk(θ)wk +
∑

k∈R\Dj

∆Fjk(θ)rk + ṽj
)

If the conditions of Proposition 3 hold, then it can be shown
that V̄j(θ) ≥ Ē[ẽj(t)2], where ẽj is the whitened version of
ṽj . Secondly, it can be shown that when V̄j(θ) = Ē[ẽj(t)2]
it must hold that Gjk(θ) = G̃0

jk(Dj), k ∈ Dj .
The following example will illustrate how the conditions

of Proposition 3 can be violated in (11).
Example 3: Consider a network described by:w1

w2

w3

 =

 0 G0
12 G0

13

G0
21 0 G0

23

0 0 0

w1

w2

w3

+

v1v2
v3

 (15)

where all transfer functions are strictly proper and Φv is
diagonal. Suppose G0

21 is to be estimated. Choose D2 = {1}.
This choice of D2 satisfies the conditions of Proposition 2.
Rewrite (15) in terms of only wk, k ∈ D2 as in (11):[

w2

w1

]
=
[

0 G0
21

G0
12 0

] [
w2

w1

]
+
[
ṽ2
ṽ1

]
.

with

Φṽ =
[
|H0

1 |2 + |G0
13H

0
3 |2 G0

13|H0
3 |2G0

23
∗

G0
23|H0

3 |2G0
13
∗ |H0

2 |2 + |G0
23H

0
3 |2
]

(16)

By the spectral factorization theorem, ṽ2 can be expressed
as H̃2(q, θ∗)ẽ2(t), where ẽ2(t) is white and θ∗ is unique.
This shows that Condition (a) of Proposition 3 is satisfied.

Since θ∗ is unique, Condition (b) must also be satisfied
for this particular θ∗. For this example, Condition (b) is:

Ē[ẽ2(t) ·∆G21(q, θ,D2)w1(t)] = Ē
[
ẽ2(t)

· ∆G21(q, θ,D2)
1−G0

12(q)G0
21(q)

(
ṽ1(t) +G0

12(q)ṽ2(t)
)]
. (17)

Since both G0
12 and G0

21 have delays, it follows that the
second term in (17) is a function of ṽ2(t− k), k ≥ 1. Since
ẽ2(t) is constructed to be white, Ē[ẽ2(t)ṽ2(t−k)] = 0, k ≥ 1.
Consequently, the second term of (17) is zero.

However, by (16) ṽ1 and ṽ2 are correlated, therefore, the
first term in (17) will not equal zero, violating Condition (b)
of Proposition 3. Consequently, consistent estimates cannot
be guaranteed using Algorithm 1 for this network.

Note that if either G0
13 or G0

23 were 0 then the conditions
of Proposition 3 would be satisfied because Φṽ in (16) would
be diagonal. �

From Example 3 it appears that the conditions of Propo-
sition 2 are not sufficient to guarantee consistent estimates
using the Direct Method. The problem lies in the disturbance
terms. In statistics the variable v3 in Example 3 is referred
to as a confounding variable [13].

In the main result of the paper, it is shown that if ṽj
is uncorrelated to the other ṽk, k ∈ Dj then it is possible
to obtain consistent estimates using Algorithm 1. From the
expression of Φṽ in (10), it can be seen that ṽj is uncorrelated
to ṽD if G̃0

DZΦvZ G̃
0∗

jZ = 0. If ΦvZ is diagonal then this
equation will hold as long as there is no node in Zj from
which there is a path to both wj and any other node wk,
k ∈ Dj . It is now possible to formally state the main result
of this paper.

Proposition 4: Consider a dynamic network as defined
in Section II-A that satisfies Assumption 1. Assume Φv
is diagonal. Let {wk}, k ∈ Dj and {rk} be the set of
internal and external variables respectively that are included
as inputs to the predictor (3). Suppose that Pj is chosen
such that k ∈ Pj if there is a path from rk → wj that passes
only through wn, n ∈ Zj . Consistent estimates of G0

ji are
obtained using Algorithm 1 if the following conditions hold:

(a) There is a delay in every loop wj → wj .
(b) The set Dj satisfies the conditions of Proposition 2.
(c) There is no node wk, k ∈ Zj from which there is both

a path to wj and a path to any other wn, n ∈ Dj .
(d) Power spectral density of [wk1 · · · wknr`1 · · · r`m ]T ,

k∗ ∈ Dj , `∗ ∈ Rd is positive definite for all ω ∈ [−π, π].

(e) The parameterization is chosen flexible enough, i.e. there
exists a parameter θ∗ such that Gjk(θ∗) = G̃jk(Dj), k ∈
Dj , Fjk(θ∗) = G̃jk(Dj), k ∈ Pj , and H(θ∗) = H̃j(Dj)
where G̃jk(Dj) and H̃j(Dj) are defined in (11).
Proof: By Condition (b) and Proposition 2 wj can be

expressed in terms of wk, k ∈ Dj as:

wj = G0
jiwi +

∑
k∈Dj\i

G̃0
jk(Dj)wk +

∑
k∈R\Dj

G̃0
jk(Dj)rk + ṽj
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where some of the transfer functions in the second sum-
mation may be zero. From (7) the transfer functions in the
second summation are

G̃0
jk(Dj) = [G0

jZ(I −G0
ZZ)−1]jk =

∑
`∈Zj

G0
j`G

0
`k = 0,

where [·]jk denotes the (j, k) entry of the matrix in square
brackets. By Lemma 2 if there is no path from wk → w`
then G0

`k is zero. Thus if there is no path from rk to wj either
G0
`k or G0

j` (or both) is zero. On the other hand, if there is
such a path, then by construction, k ∈ Pj . Consequently, wj
can be expressed as:

wj=G0
jiwi +

∑
k∈Dj\i

G̃0
jk(Dj)wk +

∑
k∈Pj

G̃0
jk(Dj)rk + ṽj (18)

which can be considered as the ‘data generating system’.
Next it is shown that (18) satisfies all conditions of

Proposition 1, meaning that consistent estimates of G0
ji can

be obtained using Algorithm 1.
By Condition (a) every loop that passes through wj in the

network has a delay. By (11) and Lemma 2 it follows that
every loop that passes through wj in (11) has a delay.

By Condition (c) and (10) it follows that ṽj is uncorrelated
to all other noise sources ṽk, k ∈ Dj . The remaining
conditions of Proposition 1 are also satisfied.

w1

G0
21G0

12

w2

G0
32G0

23

w3 G0
37

w7

G0
28

w8

G0
87 G0

78

G0
41

w4

G0
54G0

64

w5w6

G0
36 G0

35

v1

v2

v3

v4

v5v6

v7

v8

Fig. 2. Network that is analyzed in Example 4. Each rectangle represents
a transfer function, and for notational convenience labels of the wi’s have
been placed inside each summation, which denotes that the output of the
sum is the variable wi.

Example 4: Consider the dynamic network shown in Fig.
2. Suppose the objective is to obtain consistent estimates of
G0

32 (denoted in green) using Algorithm 1. The set Dj must
be chosen so that it satisfies the Conditions of Proposition
4. Choose D3 = {2, 4, 7} (denoted in blue).

Another possible choice for D3 = {2, 5, 6, 7} = N3. This
choice of D3 always satisfies Condition b. �

IV. ALGORITHMS

Condition (b) can be reformulated using the notions sepa-
rating sets in graph theory. The advantage is that tools from
graph theory can be used to check the conditions [12], [14].

Let the node wj be split into two nodes, w+
j to which

all paths coming into wj are connected and w−j to which all

paths leaving wj are connected. w+
j is connected to w−j with

the path Gj+j− = 1. The Conditions (a) - (c) of Proposition
2 can be re-expressed as
1. Dj \ {i} is a {wi}-{wj} separating set for the network

with path G0
ji removed,

2. Dj is a {w−j }-{w
+
j } separating set for the network with

path Gj+j− removed,
These conditions can be formulated as a single condition.

The set Dj is a {wi, w−j }-{w
+
j } separating set for the

network with edges G0
ji and Gj+j− removed.

Condition (c) of Proposition 4 can be reformulated as
follows. Consider the graph of (11). Switch the direction of
all paths coming into w+

j (this is the effect of the conjugated
term G̃0

jD in (10) ). For this new graph, there must be no
path of length greater than 1 from w+

j to any wk, k ∈ Dj .
Whether such a path exists can be checked using Lemma 1.

V. CONCLUSION

Conditions on the predictor inputs have been presented
such that it is possible to obtain consistent estimates of the
dynamics of a particular module embedded in a dynamic
network using the Direct Prediction-Error Method. This
enables the user to design sensor placement schemes.
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