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On rnultivariable partial realization? 

A. A. H. DAMENf, R. P. GUIDORZI$, A. K. HAJDASINSKIll and 
P. M. J. VAN DEN HOFS 

In this paper some aspects of the partial realization problem for multivariable 
formal power series are considered. The dynamic structure of the systems 
underlying such series is analysed on the basis of the results of Kalman, and a 
canonical realization algorithm is described based on this concept of 
structure. Special attention is paid to the aspect of uniqueness of the realization; 
necessary and sufficient conditions are given for the uniqueness of the extension 
sequence. A specific class of power series is defined for which a very simple 
uniqueness criterion is derived. Generally, noise-disturbed data sequences belong 
to this specific class; it is shown that the unique partial realization for such a noise- 
disturbed power series may serve as an intermediate step to arrive at an approximate 
realization of limited order. 

1. Introduction 
The comparatively young field of system theory has already seen many fashions 

that sometimes have emphasized specific problems and sometimes specific 
methodologies. Moreover the large advances, undoubtedly achieved, have some- 
times given the impression of the attainment of every possible degree of knowledge in 
some sectors. This feeling, which periodically appears in every field, has almost 
invariably been proved vacuous by subsequent results. . 

The fundamental importance of the realization problem has, in fact, never been 
questioned in system theory. However, it seems to  be a common opinion regarding 
the realization of linear time-invariant systems that almost everything has been said 
about this problem after the work of Kalman (1960) and subsequent developments 
(Kalman 1963,1968,1971, H o  and Kalman 1966, Tether 1970, Ackermann and Bucy 
1971, Silverman 1971, Roman and Bullock 1975, Ledwich and Moore 1976, Brockett 
1978). 

Yet new insights,into the partial realization of formal power series can be found in 
a recent paper by Kalman (1979) where many implications of this problem are 
investigated in depth. That paper treats the scalar case; the multivariable case 
requires, as usual, more complex technicalities and also exhibits some peculiar aspects 
essentially related to  the concept of multivariable structure which is not relevant for 
the scalar case (see, for example, Zazworsky et al. (1979), Bosgra (1983) and Bistritz 
(1983)). 
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590 A. A.  H. Damen et al. 

Nevertheless Kalman's approach can easily be generalized for the multivariable 
case. After a short restatement of the problem this will be done in this paper. 

A multivariable formal power series is given by an infinite sequence of q x p 
matrices of generally real entries 

In fact there are no restrictions on the field to which these coefficient matrices 
belong. In control engineering it is usual to think of such sequences as a matrix 
power series in the delay operator z - ' :  

This explains the names 'power series' and 'coefficient matrices'. In the practice 
of system engineering the coefficients may then be, for example, the Markov 
parameters of a process or the covariances of a set of stochastic signals. 

The dimension n of such a sequence is said to be finite if and only if it can be 
represented by 

where F, G, H are matrices of sizes n x n, n x p, q x n and n is the finite dimension of 
this triple. N +  is the set of positive integers. In the case that we are dealing with, 
Markov parameters, this means that F, G, H, are coefficient matrices o f a  state-space 
representation for the process concerned of dimension n with p inputs and q outputs. 

A triple (F, G, H )  is called a minimal realization if and only if the dimension n is 
minimal among all possible (F', G', H') .fulfilling (2). A necessary and sufficient 
condition for the existence of a realizat,ion of dimension n is given by the realizability 
criteriont (see, for example, Tether (1970)): 

There exists an integer N o  such that 

where p H [ a ,  b] is the rank of the block Hankel matrix of block size a x b, 
constructed from the sequence of matrices M(i) .  

If we are dealing with a sequence of finite length L: 

we can always find a triple ( F ,  G, H} of finite size such that 

and consequently the dimension n of this sequence will always be finite. Then such a 
triple {F, G, H )  is a partial realization of the sequence {M(i)),. The attribute 
'partial' is being used since just a finite sequence has been fitted by a realization. 
Such a finite sequence may be part of an infinite sequence which is not fully available. 

An important aspect in minimal partial realization is the question of whether the 
extension is unambiguously determined by the finite sequence if a minimal complexity 
(i.e. dimension n) of the realization is required. This characteristic is confined in the 
property of uniqueness (of the extension). If the extension is not unique, this implies 

t In Silverman (1971) an equivalenl criterion is proposed where i is fixed to 1. This could 
be done by taking advantage of the particular structure of a block Hankel matrix. 
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On multivariable partial realizations 59 1 

that the partially available sequence does not provide enough information about the 
underlying process. On the other hand, if the extension is unique this does not 
guarantee that the partial realization contains all information about the underlying 
process. In both cases, the partial realization will incorporate all information 
contained in the sequence of finite length {M(i)),. 

So the crucial questions are what the minimal value of the dimension n is and 
whether the continuation M(i)=HFi-'G for i >  L is unique for all triples with 
minimal dimension satisfying (5). 

Following the definition of Kalman (1979) we can state the problem more 
formally. 

Definition I .  Minimal partial realization problem (MPR) 

(a) Find all exact realizations of sequence {M(i)), whose dimension n is minimal 
over the family of all possible realizations for this sequence. 

(b) Give the necessary and sufficient conditions under which there is only one 
minimal partial realization ('uniqueness' in the sense of the extension of 
{M(i)),, which forms an equivalence class modulo the choice of basis in the 
state space). 

(c) In the case of non-uniqueness, parametrize all minimal partial realizations. 

In 5 2 we will elaborate a partial realization for multivariable sequences. The 
multi-companion forms appear to be closely related to this analysis of the minimal 
partial realization problem (MPR). Subsequently the MPR in a multi-companion 
output form will be formally stated and elucidated with an example in 5 3. In 5 4 the 
conditions for the uniqueness will be analysed and it will be shown that in the generic' 
case such conditions will take a very simple form. Finally, in 5 5 some reflections are 
made on the approximate partial realization problem. In connection with the MPR 
a straightforward and proper definition for this problem will be proposed. 

2. Minimal partial realization 
It is known (Tether 1970, Kalman 1971) that the minimal dimension of a finite 

matrix sequence can be found by means of the rank of the partial behaviour matrix, 
which we will now define. 

The partial behaviour matrix associated to the finite sequence (M(i)), is the 
following (block) Hankel matrix: 

where the elements denoted by '? correspond to values of the sequence which are not 
part of the data given for the partial realization problem. The rank of this partial 
behaviour matrix is defined as the minimal possible rank obtained by proper choice of 
the elements indicated by the question marks. 
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592 A. A. H .  Damen et al. 

In detail we may develop the actual determination or the rank by the following 
procedure: 

2.1. Rank o j a  partial behaviour matrix 
Examine the first p columns of BL (which belong to the vector space RqL). If they 

are null the rank of BL is zero and no other operations are required. Otherwise, if n ,  
independent columns have been found, consider the second group of p columns of B, 
and check if it contains vectors linearly independent of those of the first group (we are 
now in R q ' L - l )  since the last q entries in the vectors of the second group are not 
given). If only d,ependent vectors are found the procedure ends, otherwise, if n,  
independent vectors have been found, the third and following groups are considered 
until no independent vectors are found or until the whole matrix has been 
examined. Now the rank of the partial matrix BL is defined as n = ni. 

i 

The rank of a partial matrix as defined contains the definition of the rank of a 
complete (ordinary) matrix. Moreover, rank BL cannot be decreased by adding any 
element to BL and is therefore a lower bound on rank B, for any extension of the given 
partial sequence. 

Remark 1 
If rank BL = 0 the partial realization problem is trivial since the dimension is zero 

(all entries are zero). There exists no minimal realization. When n = rank BL > 0 it 
is well known that n is the minimal dimension for the possible partial realizations of 
the given sequence. 

Remark 2 
. The rank of a partial behaviour matrix can be indifferently computed (just as the 
rank of a complete matrix) checking the independent columns (as in the given 
definition) or checking the independent rows. 

Remark 3 
Only in exceptional. cases will the partial behaviour matrix have full rank. For 

example, it may happen for a single delay line of L samples, as can easily be checked: 

o . .  
0 . 0  

. 0 1  

O l ?  

I ? .  

? . .  

rank BL = L 

In the generic case however, where the elements of the formal power series show no 
interdependence, all submatrices of B, with known elements will have full rank, 
contrary to the example of the delay line. ~ o n s e ~ u e n t l y '  in the generic case the rank 
of the partial behaviour matrix will be equal to the dimension of the biggest square 
submatrix of known elements. This is substantially smaller than the maxima1 
rank L. We will elaborate on this in 6 4. 
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On multivariable partial realizations 593 

As we are dealing with the multivariable case, the aspect of model structure 
becomes important when analysing a data sequence, in contrast to the scalar 
case. The input structure (respectively, output structure) is reflected in the status of 
columns (respectively, rows) in the partial behaviour matrix. We will now analyse 
this topic in more detail. 

2.2. Structure of a partial behaviour matrix 
Consider the partial behaviour matrix (6) and apply the rank determination 

procedure to its columns. Denote with p, the number of previously found indepen- 
dent vectors (if any) appearing in the first position of the first, second, . .. , and Lth block 
column considered. Similarly denote with p,, ... , p, the numbers of independent 
vectors which have been found in the second, ..., pth position of the same block 
columns. The integers (p,, .. . , p,) will be called 'control invariants' of B,. Now 
apply the rank determination procedure to the rows of B, and define, similarly, the 
integers (v,, ..., v,) which will be called 'observation invariants' of B,. The two sets 
of integers (p,, ..., p,) and (v,, ..., v,) define the structure of BL. Obviously 

Remark 1 
It is well known that the integers (pl,  ..., pp) and (v,, ..., v,) are the control and 

observation invariants of every minimal state-space realization (F, G, H) of the given 
formal power series (Kronecker invariants). 

Remark 2 
It is well known that all pi independent vectors selected from the ith position 

within the different block columns in B, belong to adjacent block columns 1 to 
pi. Thus, if, for instance, p, = 2, the independent vectors selected from the second 
position in the various block columns come from the first and second block column. 

Example 1 
Consider the matrices 

then 

The application of the rank determination procedure to the columns of B, shows that 
in the first block column two independent vectors (in R4) are present. When the 
second block column is considered only its first vector is linearly independent of the 
preceding ones (now in R2). In (7) the independent and dependent vectors are denoted 
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594 A. A. H .  Damen et al. 

with the symbols 'c' and 'o',  respectively. The determined rank is thus n = 3 .  The 
same procedure applied to the rows of B, shows both rows of the first block row and 
the second row of the second block row to be independent. Again, the determined 
rank is n  = 3. The control invariants of B ,  are given by p, = 2 and p, = 1 while its 
observation invariants are given by v ,  = 1 and v, = 2. 

2.3. Additional tools /or  structure analysis 
~ e x t  the influence df the addition of new samples M ( L +  I ) ,  M ( L +  2), ... to 

available ones M(I) ,  M(2) ,  .. . , M ( L )  of a sequence can be analysed as a means to solve 
the MPR problem. For this purpose the following lemma and corollaries will play a 
fundamental role. 'The first lemma is an extended version of the lemmas given by 
Kalman (1979) and Tether (1970) and presented here for the general multivariable 
situation. The proof is given in Appendix I. 

Main lemma 
Consider the partial matrix 

with A,  B and C of proper dimensions. There exists one and only one matrix D, 
which satisfies the condition 

This holds for any size of matrix D, so in particular it is true when D is a scalar d .  
Then B and C are a column vector b and a row vector cT, respectively. 

Corollary 1 
Consider a partial matrix R(?) with 

(1) p [ R ( d ) ]  = p[R(?) ]  i fand  only if 

( a )  PCA i . b l >  PCAl, 

or (c) p [ A  i b] = p [ .  A ] -  = p [ A ]  and d is given the unique singular value 
cT 

according to the main lemma. 
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On multivariable partial realizations 

(2)  p [R(d )  J = p [R(?) J + 1 i f  and only ij 

p[A 1 b] =P[: i ]  = p [ A ]  and d is not given the unique singular value 

according to the main lemma. 

The proof is by inspection. 
In other words, substitution of d in the partial matrix R(?) can only increase the 

rank of R if d appears in both a dependent row and a dependent column, and d is not 
given the unique singular value defined by the main lemma. 

When analysing the influence of individual entries M i j ( L  + 1) on the rank of BL+ ,, 
one is confronted with a situation similar to Corollary 1 .  By inspection and use of 
Corollary 1 the following corollary can be verified. 

Corollary 2 
Given a partial behaviour matrix EL+, where at least the elements M(I) ,  M(2),  . . . , 

M(L) ,  M,,(L + I) for k = I, . .., i ;  1 = 1 ,  .. ., j and (k, 1 )  # ( i ,  j )  have been specified. 
Insertion of entry MiJL+l)  into B L + ,  can affect the rank of E L + ,  if and only 
i f  Mi,(L+ 1) occurs in EL+, at a crossing of a dependent row and a dependent 
column. 

The main lemma and both corollaries will be used in analysing the partial 
behaviour matrix in detail, and in studying the particular influence of each entry in a 
sample M ( L + 1 )  on the structural invariants of the system underlying 
{ M ( i ) .  These entries may cause jumps on the structural invariants vi and p,, as will 
be shown. 

2.4. Insertion of a single new entry of M ( L  + 1 )  in B L + ,  
Consider the insertion of the (i,j)th entry of M(L'+ 1 )  that was unspecified 

before. To refer to a completely specified scenario it will be assumed that in each 
column and each row where this unknown entry appears, all entries up to the entry 
(i, j )  under study have been specified before, as stated in Corollary 2. The control and 
observation invariants of EL+, before the insertion of the considered entry are 
denoted by (p, ,  ... , p,) and ( v , ,  . .. , v,). 

Let us first study the effect with the help of Example 1. For entry (1, 1) of Markov 
parameter M(3) we deal with the situation: 

Applying Corollary 2 to this partial behaviour matrix, noting that for all three 
positions of M ,  ,(3) in B, the entry is placed in an independent row or an independent 
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596 A. A. H. Damen et al. 

column, it follows that no value of M , , ( 3 )  exists that can affect the structure of 
B,. Therefore this entry can freely be chosen and is not fixed by M ( l ) ,  M ( 2 )  and the 
requirement of an extension with minimal dimension. M ,  ,(3) can be considered as  a 
free parameter. Let us indicate this with ' x ' and continue t o  study M,, (3) :  

In this partial matrix at position (3,4) a dependent row and column meet at the 
unknown entry; therefore by Corollary 1 this entry is uniquely determined if one is to  
avoid affecting the structure. If M , , ( 3 )  is inserted and is not equal to this unique 
singular value, the third row and the fourth column of B, will become independent 
and the structure indices v ,  and p,, and rank B, will increase by 1 .  Similarly it can 
be derived that both entries M 2 , ( 3 )  and M 2 , ( 3 )  cannot affect the structure. 

It has to be noted that an entry of Markov parameter M ( L  + 1) appears L  + 1 
times in the partial behaviour matrix BL+,  . Several times this entry may appear on 
intersections of dependent rows and columns. O n  each crossing then, a unique value 
is specified by the main lemma that will not affect the structure of BL+,f. These 
values are the same for all different positions in B,,,. This can be proved by 
contradiction, inspecting dependence and independence of rows and columns in BL+, . 

The results pointed out in the example above can be extended to the general 
case. The entry M i j ( L +  I) appears L +  1 times in the partial behaviour 
matrix. Suppose that among these positions there are 1 positions a t  crossings of 
dependent rows and dependent columns. If M i j ( L  + 1) is given a value conflicting the 
main lemma, then with Corollary 2  the 1 mentioned positions in BL+,  will change 
dependent rows/columns into independent rows/columns. This means that after 
insertion of this value of M i j ( L  + I), v i  and pj will jump to  v, + 1 and p, + 1, 
respectively. As a result the minimal dimension n of the partial realization, i.e. the 
rank of BL+, ,  will also increase by I .  

After this analysis of the influence of new entries, we may formally state the result 
as follows. Consider two sets of integers 

sf = { P ~ P + ~ , ( P , +  I ) p + j ,  . . . , L  p + j )  (10)  

(Si indicating the dependent columns in block position j  and Si indicating the 
dependent rows in block position i )  and the set of ordered pairs of integers given by 

S$+"= { ( i ,  L p + j ) , ( q + i , ( L -  l ) p + j ) ,  ...,( Lq + i , j ) }  (12)  
i.e. the positions of the considered entry M i j ( L  + 1 )  in the partial behaviour matrix. 

Formally the main lemma cannot be applied in the case this situation occurs in the first 
column or the first row of EL+ ,. In that case the unique value is given by zero, as can easily be 
verified. 
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On multivariable partial realizations 597 

Result 
The insertion of M i j ( L  + 1) in BL+, does not modify the integers v, for k # i and p, 

for h # j. The jump of vi and p j  is given by zero or by the number of elements of the 
set Q'ijL") = S $ + ' ) n ( S j  x S',). When Q!:'') is not empty there exists one and only 
one value for the considered entry which leads to  a zero jump. Every other vafue 
increases the rank of EL+, by the number of elements of the set Q$+ I). According to 
the given definition of structure for a partial behaviour matrix, the considered increase 
in rank EL+, due to  M i j ( L  + I) will be entirely observed in the invariants vi and pj and 
not in any other invariant. 

Example 2 
Consider the sequence 

The partial behaviour matrix B, becomes 

and the insertion of M 2 , ( 3 )  is considered. Leaving this entry undetermined, the rank 
of the partial behaviour matrix B ,  is 3  while its structure is given by v ,  = 1, v ,  = 0, 
v ,  = 2, p, = 1 ,  p2 = 2. Thus it follows that 

Thus the jump of rank B,, p2 and v ,  is 2 when the (2, 1)th entry of M ( 3 )  is generic and 
zero when it assumes the singular value (0 in this case) in correspondence with the 
main lemma. 
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598 A. A. H. Darnen et al. 

Now it has been shown that the control and observation invariants of a partial 
behaviour matrix play a fundamental role in the description of the dynamical 
behaviour of fo;mal power series. These invariants play a fundamental role also in 
the description of input-output and state-space models belonging to canonical classes 
with respect to given equivalence relations (Beghelli and Guidorzi 1976, Guidorzi 
1979, 198 1). In the next section a partial realization algorithm based on the use of 
multi-companion canonical forms is presented. 

3. A partial realization algorithm in multicompanion canonical form 
A complete description regarding this approach and also considerations regarding 

the selection of stable models in the family of possible ones can be found in Roman 
and Bullock (1975). The considered realization algorithm can be based either on the 
information carried by the control invariants or on the information carried by the 
observation invariants; dual models are obtained following this method. The 
control invariants of the partial behaviour matrix will be considered. 

Consider a partial behaviour matrix EL whose control invariants p, ,  ..., pp are 
assumed to be non-zero. A minimal partial realization (F, G, H)  of BL in a multi- 
companion canonical form can be obtained by means of the following steps. 

H = [M1(I) M1(2) ... M1(p,) ... MP(l) MP(2) ... MP(pp)] (18) 
S t e p  3 

Denote with B i  the kth column of BL. Construct then the dynamical matrix F as 
follows 

F = [ F i j ]  (i, j = 1, .. . , p) (19 a) 

S t e p  1 
Construct the input distribution matrix G by means of the first, (p, + l)th, ..., and 

(p, + ... + pp- I + 1)th column of the identity matrix I, where n = p, + ... + p,. 

t- 1 

" ( ~ l + l )  

+(p, + ... + p p - l  + 1) 

G =  

Step  2 
Denote with Mk(i) the kth column of the coefficient matrix M(i). Then construct 

the output distribution matrix H as follows 

- - 
1 0 ... 0 

0 0 . . 0 

: 0 

! . . i 
. . . . . . . . 0 
. . . . . . . . 1 . .  
0 0 ... 0 - 
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On multivariable partial realizations 

where the scalars 

are selected in order to express the linear dependence of the vector B{"J+' (if this 
vector is present in BL) from the previous linearly independent columns of B,, i.e. 

Note that since only independent columns at the left of BgPj+' are considered, the 
integers pi j  assume the following values 

pij = min ( p i ,  pj + 1) for i < j  

p i  = m i  ( p i  p ,  for i > j 

If the vector B ~ , J + '  does not belong to BL then all the scalars (20) can take arbitrary 
values. Note, however, that also when relation (21) must be satisfied, some degrees of 
freedom can remain if, for example, the number of defined entries in BfPjtJ is lower 
than the number of independent vectors of BL at its left. 

Proof 
The property of the obtained triple (F, G, H) to realize BL can be easily verified 

' considering that, by construction, [ H F k -  GI' = MJ(k)  for k  = 1, . . . , pj  and that 
condition (21), because of the block Hankel structure of B,, assures the fulfilment of 
the previous condition for k = pj + 1 ,  ... , L. 

Example 3 
The canonical partial realization of the sequence 

is considered. The control invariants of B, are, in this case, p ,  = 3 and p, = 2. 
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600 A. A.  H. Damen et al. 

Thus the order of the associated minimal partial realization is n = 5. 

Step I 
The input distribution matrix is given by 

Step 2 
The output distribution matrix is given by 

Step 3 
The dynamical matrix F is of the type 
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On multiuariable partial realizations 60 1 

Thescalars [a,,, a,,, all, a,,, a,,,] and [a,,, a,,, a,,, r,,,] must be selected 
in order to express the linear dependence of the vectors B: and Bz from previous 
independent vectors in the matrix B,. Since the vector B: does not belong to B,  the 
scalars [a,, , a, ,, a,, , a,, , a,, ,I can be arbitrary. The vector B:, on the contrary, is 
the sixth vector in B,. 

Since only the first three entries of B: are defined, the selection of the scalars 
[a,,, a,,, a,,, a,,, a,,,] must be such to satisfy the relation 

The following values are thus obtained 

a,,, = 0, a,,, =arbitrary 

a,,, = arbitrary, a,,, = 3 

= O  

The dynamical matrix F is thus given by 

where the elements denoted by ' x '  are arbitrary entries. 
If we had taken the observation invariants, we would have obtained: 

F =  

where the entries denoted by ' x '  are completely arbitrary. The number of arbitrary 
parameters (7) is the same as in the realization performed by means of control 
invariants. 

- 
O O X  

l o x  

0 1  x 

............. 

0 0  x 

0 0  x  - 

Remark 1 
In the considered partial realization algorithm all the invariants have been 

assumed different from zero. The case of zero invariants has modest interest and can 
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602 A. A .  H .  Damen et al. 

be easily treated. In fact, the presence of null invariants indicates that the associated 
inputs and/or outputs (control and/or observation invariants) of the model (F, G ,  H )  
must be assumed linearly dependent from the remaining ones. Thus it is sufficient to 
avoid the introduction of any dynamics (blocks of F) associated with the considered 
inputs or outputs. The algebraical links with remaining inputs or outputs can be 
easily introduced in the matrices G or H. 

Remark 2 
The conditions leading to non-unique minimal partial realizations are very clear in 

. the proposed algorithm (and in the numerical examples). From an algebraic point 
of view these conditions correspond to the possibilities of expressing the linear 
dependence of a vector from a set of non-independent vectors. The canonical forms 
used, because of their minimal parametrization, directly exhibit the various sets of 
scalars which can be used to solve the previous dependence problem. This responds 
to aspect (c) of the minimal partial realization problem (Definition 1). 

Remark 3 
The obtained state-space canonical models completely describe the whole class of 

minimal partial realizations for a given power series since every other minimal 
realization can be obtained from these models via the equivalence relation induced by 
a change of coordinates in the state space. 

4. Uniqueness of minimal partial realizations; finite generic sequences 
In the previous sections we have shown that by detailed and thus meticulous 

inspection it is possible to decide whether a unique minimal partial realization exists 
or not and how to parametrize in the latter case. However, a more general and less 
detailed, necessary and sufficient condition for .uniqueness is not given. For the 
partial realization, we can find this in the partial realizability criterion, which is a 
'reflection of the realizability criterion (3) for sequences of infinite length. For finite 
length sequences a realization of finite dimension always exists; the following criterion 
gives the conditions for the uniqueness of the minimal partial realization of the finite 
sequence { M ( i ) ) , .  

Definition 2. Partial realizahility criterion ( P R C )  
There exist positive integers N and N' such that: 

( a )  N + N ' =  L 

Note that p H I N 1 ,  N ]  is the rank of the Hankel matrix of size qN' x pN whose 
elements belong to { M ( i ) } , - , .  

If the partial realizability criterion is fulfilled the Ho-Kalman algorithm can be 
applied (Ho and Kalman 1966) leading to a realization. It is easy to prove that this 
realization is minimal and moreover that there exists only one such realization (see 
Tether (1970) and/or Appendix 2). Moreover it  is proved in Appendix 2 that if the 
PRC is not satisfied, a unique MPR does not exist, where this necessity has not been 
proved before. Consequently the following theorem holds. 
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On multiuariable partial realizations 603 

Theorem 1 
A finite sequence {M(i)), has a unique minimal partial realization if and only if the 

partial realizability criterion is fulfilled. 

We will now work out an example, illustrating the effect of this criterion. 

Example 4 
Let { M ( i ) )  be the Markov parameters of a single-input single-output system 

(SISO), which consists of two delay lines of 1 and 5 samples: 

{ M ( i ) )  =1,0, 0, 0, 1,0, 0 ... 

The infinite Hankel matrix is then given by 

and it is easy to show that: 

For 2 6  L G 4 ,  

(i) the rank will be 1; 

(ii) the PRC is satisfied for all N ,  N' where N + N' = L; 

(iii) there is a unique MPR with transfer function z-' and, for example, F =0, 
G = H = I .  

For 5 G L G 7 ,  

(i) the rank n will be 4; 

(ii) the PRC is not satisfied for any N, N' where N + N' = L, for N, N' 2 4 will 
require L >, 8; 

(iii) there is not a unique MPR. 

For L  = 8, 

(i) the rank n equals 4; 

(ii) the PRC is fulfilled for N = N' = 4; 
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604 A. A. H. Damen et al. 

(iii) there is a unique MPR with transfer function 

z - I  + z- '  + z - 9  + ... =z3/(z4-1) 

for example, H = [l 0 0 01 

For L = 9, 

(i) the rank n equals 5; 

(ii) the PRC is not satisfied for any N, N' where N + N' = L, for N, N' > 5 will 
require L >, 10; 

(iii) there is not a unique MPR. 

For L 3 10, 

(i) the rank n equals 5; 

(ii) the PRC is satisfied for N 2 5, N' 2 5 and N + N' = L; 

(iii) there exists a unique MPR with transfer function z - '  + z-' = (z4 + l)/zS, for 
example 

H=[1 0 0 0 01 
Formally the necessary and sufficient condition for a unique MPR is stated by the 

PRC. In practice this criterion shows two disadvantages: 

(1) It is a rank test on at least three different matrices, which implies quite a lot of 
work. We say 'at least' as we do not know N and N' beforehand, which could 
fulfil PRC. Therefore we have to check all possible pairs (N, N') as long as no 
pair is found that satisfies the PRC. 

(2) A rank test becomes rather indefinite when it concerns inaccurate data. 

In cases where one is dealing with data which is not disturbed by noise, the second 
disadvantage may be overcome, but numerical (truncational) errors may still be 
troublesome. If we are dealing with noisy data, the exact minimal partial realization 
will be of a high dimension and will also incorporate the noise contribution. We will 
now show that the partial realizability criterion can be substantially simplified for 
such 'noisy sequences'. A 'noisy sequence' will be defined to belong to the following 
class of sequences: 
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On multioariable partial realizations 605 

Dejnition 3. Finite generic sequence ( F G S )  
A finite generic sequence { M ( i ) ) ,  is a sequence of L (q x p) matrices for which 

every Hankel matrix constructed from this sequence has full rank. 

Comment 
In practice it concerns a sequence of stochastic data. Only in the exceptional case 

of certain deterministic (particular, singular) sequences, dependences may appear 
among the rows (or columns) of the Hankel matrices concerned. Consequently the 
probability is one that a random sequence will be an FGS. 

Because or the special properties of a FGS, a concrete statement can be made with 
respect to the minimal dimension of the corresponding partial realization, reflected in 
the next theorem. 

Theorem 2 
The minimal dimension ii of a finite generic sequence is the rank of the partial 

behaviour matrix and equals the dimension of the biggest square submatrix of known 
elements. 

The verification of this theorem is easy and will be left to the reader. 
The biggest square submatrix of BL has to contain either an integer number of 

block rows or an integer number of block columns or both. Based on this statement 
and on Theorem 2 an expression for the minimal dimension f i  can be derived 

n = mar Iq entier [ ( L C  I)&], p entier [ ( L  + I)&]) (23) 

(for derivation see Appendix 3). 
For a finite generic sequence the partial realizability criterion cannot be satisfied 

by linear dependence between the elements in the rows/columns in the Hankel matrix; 
the stochastic nature of the sequence will prevent this. Therefore the only situation 
in which the PRC can be satisfied, is when the rank of an enlarged Hankel matrix 
cannot increase because it is restricted by the smallest dimension of H. This result is 
stated in the next lemma. 

Lemma 2 
For a finite generic sequence the partial realizability criterion is satisfied ifand only 

ijthere exist integers N', N such that N' + N = L and H [ N ' ,  N ]  is a square matrix. 

The proof of this lemma is given in Appendix 4. If the condition mentioned in 
this lemma is fulfilled, the rank of the square Hankel matrix will equal the minimal 
dimension n' of the finite generic sequence. 

The results above give us instruments for developing a very concrete and 
manageable criterion for the uniqueness of a minimal partial realization of an FGS. 

Theorem 3 
A finite generic sequence has a unique minimal partial realization if and only i/ 

where a E N +  and k is the greatest common divisor (GCD) of ( p ,  q). 



D
ow

nl
oa

de
d 

B
y:

 [U
T 

U
ni

ve
rs

ity
 o

f T
ec

hn
ol

og
y 

D
el

ft]
 A

t: 
09

:4
3 

12
 J

ul
y 

20
07

 

606 A. A. H. Damen et al. 

Proof 
In Theorem 1 it has been proved that the PRC is a necessary and sufficient 

condition for the existence of a unique MPR which, of course, also holds for an FGS. 
According to Lemma 2, the fulfilment of the PRC is equivalent to the existence of a 

square Hankel matrix of size qN' x p N .  Consequently this is true if and only if 

N', N integer 
k=GCDof(p ,q)  

N1q=Np=i i  
aP a4 N '=-  N = -  
k '  k 

furthermore L = N' + N = a(p -t- q)/k, and as a result 

Comment 
(i) This criterion for uniqueness is a very suitable, simply decountable tool. 

(ii) These specific expressions for L and n' correspond with the general formula- 
tion for ii, as expressed in (23). 

(iii) The rank of the partial behaviour matrix was A. Consequently the number of 
degrees of freedom for a state-space description equals ii(p + q). By putting 
this equal to the number of elements Lpq in the FGS ( f i ( i ) ) ,  the same 
condition (24) can be derived. 

Finally, if, for a finite generic sequence the partial realizability criterion is fulfilled or 
equivalently L satisfies Theorem 3 the realization can easily be found, for example, by 
means of the Ho-Kalman algorithm, or the algorithm presented in the previous 
section. If the PRC is not fulfilled application of a multi-companion realization 
algorithm will lead to a minimal partial realization with a number of free 
parameters. These parameters can be given arbitrary values, reflecting the addition 
of extra matrices G(i) to the given sequence, until L satisfies the uniqueness 
criterion. Another approach is, of course, to neglect the last part of the data 
sequence, such that L satisfies the given condition. However, in this case these 
neglected matrices will not be realized exactly and therefore the solution to the MPR 
problem will not be correct in the sense of Definition 1. 

5. Some considerations of the approximate partial realization problem 
In this section we would like to ponder on a realization problem that is strongly 

connected to the minimal partial realization problem as analysed before. In fact the 
MPR problem can be considered both as a problem of exact modelling of a finite data 
set, and as an approximation method. The latter interpretation will be actual if a 
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On multivariable partial realizations 607 

restricted part of an available matrix sequence is used to construct a-low order- 
approximation of the complete sequence. 

In the field of system identification, a related problem arises, where one wants to fit 
the impulse response of a linear system of low dimension to a finite sequence of 
matrices. This approximate realization problem is met when one has to develop a 
state-space description of a process, of which a sequence of Markov parameters has 
been measured or estimated, and where this obtained data consequently is noise- 
corrupted (see, for example, Damen and Hajdasinski (1982)). Also in the spectral 
factorization related to the stochastic realization problem one has to deal with this 
approximate realization (see, for example, van Zee and Bosgra (1979)). It also plays 
a fundamental role when applying dimension reduction in  optimal filter design (see, 
for example, ~ilveimann and Bettayeb (1980)). 

In view of this, and building on Definition 1, that was initiated by Kalman (1979), 
the approximate partial realization problem can be defined as follows. 

Definition 4. Approximate partial realization problem (APR) 
Given a sequence {M(i)fL and the dimension n of a corresponding MPR, where 

L E N +  (possibly infinite) 

(a) find all realizations of a given dimension n, < n, where a prescribed norm is 
minimized; 

(b) give the necessary and sufficient conditions under which this approximate 
realization is unique; 

(c) in the case of non-uniqueness, parametrize all APRs. 

This problem has turned out to be a difficult one to solve. 
The characteristic of uniqueness is still important, though one might expect that 

this is trivial as n, < n. The following example shows the non-triviality of the 
uniqueness. 

Example 5 
Let { ~ ( i ) ) , = O , o ,  1 so L = 3 , p = q = 1  

and take n, = 2 < n. Such a system (n, = 2) may be parametrized as 

The prescribed norm can be taken a Frobenius norm on the finite matrix sequence . 

The minimum of this norm is zero, but can not be obtained by finite values for the 
parameters. Nevertheless the minimum may be approximated in an arbitrarily 
accurate way by choosing P, and P,  very small and a, and a, very big, such that 
a,P, -I- a,PI = 1. So there are infinitely many solutions for V = b, where 5 4 1. 
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608 A .  A .  H .  Damen et al. 

There was a tendency to attack the APR problem in a way similar to that of the 
minimal realization problem itself (Zeiger and McEwen 1974, Kung 1978, van Zee 
and Bosgra 1979, Staar et al. 1981, Silverman and Bettayeb 1980, Damen and 
Hajdasinski 1982, Damen et al. 1982). However all methods presented by these 
authors fail to solve the problem in the case of a finite data sequence and for a 
specified norm as mentioned in part (a) of Definition 4.  In many algorithms this 
failure is reflected in the problem of approximating a finite block Hankel matrix with a 
block Hankel matrix of lower rank.  his problem is still unsolved. 

However, if an infinite number of matrices is available and the corresponding n is 
finite, the APR problem may be solved using, for example, the optimal model- 
reduction results of Adamjan, Arov and Krein (see Kung and Lin (1981)). This 
algorithm is capable of finding a realization of prescribed dimension n, according to 
the minimization of the spectral norm of the infinite Hankel matrix, once an exact 
model of the original sequence {M(i)), has been found. Such an exact model of the 
original finite sequence can be constructed with the use of the theory on minimal 
partial realizations as discussed in this paper. In fact all this means that given a finite 
data sequence { M ( i ) } ,  first a minimal partial realization is constructed, based on these 
L matrices. With a model-reduction algorithm this realization is reduced in 
dimension, according to some specified criterion. 

At this moment we restrict ourselves to indicating a few problems that may occur 
when following this procedure. The MPR corresponding to the finite {M(i)}, may 
not be unique. This means that different models of minimal dimension n exist that 
reconstruct the given sequence exactly. There will be some freedom to choose a 
model from a class of 'good' models, in which all models have direrent extension 
sequences {M(i)),+ ,, ..,. ,. By choosing a specific model in this class and applying an 
optimal model-reduction algorithm as described above, the resulting reduced-order 
model will depend heavily on the chosen extension sequence. This is caused by the 
fact that the model-reduction algorithm takes into account an infinite sequence of 
matrices to approximate the model. It has to be stressed that the extension sequence 
was not part of the data given, and therefore to some extent will be 
indeterminate. Consequently the condition of uniqueness of the MPR remains an 
important one. 

Of course the free parameters in the MPR could be chosen according to a criterion 
measuring the errors between the original finite matrix sequence and the correspond- 
ing part of the finally obtained APR. However in that case the result will be a two- 
step approximation method, applying two different approximation criteria: one based 

. on a finite sequence; the other based on an infinite sequence. The overall result will 
not necessarily be well-defined. 

A more pragmatic solution can probably be found when considering the given 
matrix sequence {M(i)), to, be a measured or estimated sequence of Markov 
parameters (or covariance matrices) of a stable system. In most cases the length of 
the sequence to be measured or estimated (L) will be chosen in such a way that the 
values of the elements in the extension can be neglected. In addition to this, the 
MPR of the finite sequence {M(i)), could be chosen in such a way that the elements in 
the extension sequence are as small as possible. 

Apart from the possible non-uniqueness of the MPR, a second problem may arise 
that is related to the preceding remark. As analysed in Byrnes and Lindquist (1982), 
no statements can be made, in general, on the stability of a MPR, even if i t  is known 
that the finite data sequence is a part of,an infinite stable sequence of matrices. As we 
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On multioariable partial realizations 609 

can only apply the model-reduction algorithm to stable models, in fact we have to find 
minimal partial stable realizations. This problem has still to be studied. 

6. Conclusions 
Some considerations on the multivariable partial realization problem have been 

formulated. The lines followed have been suggested by the work of Kalman (1979) 
who has introduced new and important concepts regarding the dynamic structure of 
formal power series. 

The algorithm introduced shows, once again, the fundamental importance of the 
concept of system structure in multivariable realization problems. Nevertheless, this 
greatly complicates the test of the uniqueness of the extension. Tether (1970) 
introduced a sufficient condition for uniqueness in the form of the 'partial realizability 
criterion' (PRC). In the present paper it has been proved that this criterion is also 
necessary. Although this is quite an acceptable general criterion for realizability, we 
felt the need to find a simpler test for a generic sequence. First, this generic sequence 
was defined in the class of 'finite generic sequences' (FGSs). Next we were able to 
show that a simple algebraic test on the length L of such an FGS can be applied as a 
necessary and sufficient one for the existence of a unique extension. This powerful 
condition then indicates the number of terms in the formal power series (Markov 
parameters or covariances) by estimation or measurement, which are necessary to 
obtain a unique extension. 

The uniqueness of the extension turns out to be non-trivial for the approximate 
partial realization problem (APR) too, where one wants to find a realization of 
prescribed low dimension, which fits the formal power series as well as possible. This 
APR has been elaborated upon and it is clear that this is still an open-ended problem. 
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Appendix 1 
Proofof the Main Lemma? 

As 

i t  follows that B = AV and C = UA, where U and V are matrices of proper dimensions 
and not necessarily unique. Consequently, as the matrix D has to follow both the 
row and the column dependences in order to keep the rank equal to n, we necessarily 

t While preparing the final version of this paper, the authors came across a paper of 
Godbole (1972), giving similar results. 
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By using the generalized inverse A +  or matrix A one can write 

So there exists a solution. 
Now suppose that there exists another solution D* which necessarily has to fulfil 

Because AV = AV* and UA = U*A it follows that 

D* = U*AV* = U*AV = UAV = D 

As a result the solution (A 1.1) Tor D is unique. 

Appendix 2 
Proof of Theorem J t 
Su$iciency (PRC) - (unique MPR) 

lf the PRC is satisfied for integers N' and N ,  by applying the main lemma, a unique 
extension M ( L  + 1) can be found such that 

Because oT the structure of the Hankel matrix it follows that 

p H I N 1  f 2, N ]  = - p H [ N f  + 1 ,  N ]  = n (A 2.1) 

Then the application of the main lemma once again supplies a unique extension 
M ( L  + 2). Proceeding in this way by induction, it is proved that there exists a unique 
minimal partial realization. As the Ho-Kalman algorithm provides a partial 
realization, it necessarily has to be this unique one. (See also Tether (1970).) 

Necessity (unique MPR) - (PRC) 
The necessary condition is going .to be proved by proving the implication 

(1 PRC)-<non-unique MPR ) (A 2.2) 

Suppose BL is the partial behaviour matrix corresponding to  the sequence { M ( i ) ) , ,  
having structure indices v , ,  ..., v, and p,, ..., p,. Let us define 

v = max v i ,  p = max p, 
i i 

Kalrnan (1971) has proved that for any finite sequence {M(i)jL the integer L' defined 
by L' = v + p indicates the shortest possible length of the corresponding sequence 
{M1(i)},., where M1(i) = M(i), i = 1 ,  2, . .., rnin (L ,  L'),'such that: 

t An alternative proof or this theorem, along the lines given by Bosgra (1983), can be found 
in Van den Hof el al. (1984). 
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On multiuariable partial realizations 

(i) the PRC is fulfilled for { M 1 ( i ) } , ,  reflected in 

and consequently this sequence { M 1 ( i ) } , ,  has a unique extension; 

(ii) rank BL = rank B',. = n, which means that the minimal dimensions of the 
partial realizations of both sequences are equal. 

If the PRC is fulfilled for { M ( i ) } ,  it is easy to see that L'G L .  In this case the 
uniqueness of the realization is guaranteed. If the PRC is not fulfilled for { M ( J ) ) ,  

.... then L' > L and the question is whether the extension ( M 1 ( L  + I), M f ( L ' ) }  can be 
.... unique so that PRC is fulfilled for { M 1 ( i ) ) , . .  If this ( M f ( L  + I), M1(L') )  is unique, 

then the MPR of ( M ( i ) ) ,  is unique although PRC was not fulfilled for ( M ( i ) ) , .  We 
will now prove that this cannot be true. 

Suppose an extension of the sequence { M ( i ) ) ,  has been chosen 

in such a way that rank Bi,-, = rank BL. Such a choice is always possible, but not 
necessarily unique. In the situation L' = L + . 1 ,  this extension has zero length but this 
does not violate the following reasoning concerning the last extension Mi(L') .  

It will be proved that M1(L') cannot be determined uniquely in order to have 
rank B',. = rank B',. -, . which implies that the complete extension { M ' ( L  + I), .... 
M1(L')]  cannot be unique. 

The PRC for { M f ( i ) ) , .  can be split up: 

(a) rank H 1 [ v ,  p] = rank H ' [ v  + 1, p] (A 2.3) 

Markov parameter M1(L') has to be substituted in position '?. Because of the 
definition of p the last block column in H ' [ v ,  p] will contain at least one 
independent column vector. 'Then with Corollary 1, all entries of M1(L') 
appearing in this independent column can be arbitrary, concerning this rank 
condition, as they cannot affect rank H[v + 1, p].  

(b) The dual proof for at least one particu!ar row in M1(L')  can be given by means 
of the condition 

pH'Cv, PI = pHICv, P + 11 
Finally we may conclude that at least the element on the cross-section of the 
independent row and the independent column is completely arbitrary. This implies 

.... that ~ ' ( L ' ) ' i s  non-unique, as is the extension ( M f ( L +  I), M1(L')) .  

Result 
If { M ( L  + I), .... M(L' - I)] is chosen in such a way that rank B ,  - , = rank B,, it is 
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612 A.  A .  H .  Damen et al. 

not possible to find a unique M(L') such that rank B,. = rank BL. Consequently the 
extension { M ( L  + I), ... , M(L ' ) }  will always be non-unique, which means that (A 2.2) 
has been proved. 

Appendix 3 
Derivation of the expression for the minimal dimension of afinite generic sequence 

According to Theorem 2, the minimal dimension n' of a FGS equals the dimension 
of the biggest square submatrix in the partial behaviour matrix B,. Because of the 
structure of BL the biggest square submatrix has to contain an integer number of 
block rows or an integer number of block columns (or both). 

(a) Consider the situation where this biggest square submatrix contains an integer 
number of block rows I .  The upper limit for the number of rows n' = lq is 
given by the minimal length of these rows being (L + 1 - 1)p in order to keep 
the rank equal to A. This restriction lq < (L + 1 - 1)p becomes 

Because lq is maximized and 1 is an integer it  follows that 

(b) Considering the dual situation of an integer number of block columns m in the 
biggest square submatrix will lead to a dual result: 

mp = n'= p entier 

Situation (a) or (b) will appear depending on which expression gives a maximal value 
of the dimensions of the square submatrix. As a result 

A = max { q  entier [(L+ I)&], p entier [(L+ 1)  $11 
It may happen that the two terms in this expression are equal so that both situation (a) 
and situation (b) occur. This is precisely the case for I + m =  L and for which the 
PRC is fulfilled. 

Appendix 4 
Proof of Lemma 2 
Sujiciency (HCN',  N ]  is square and of full rank because it concerns an 
FGS) s (PRC satisfied) 

p H I N 1 ,  N ]  = A while HCN', N ]  is a ti x ti matrix. Consequently H [ N r  + 1, N ]  is a 
matrix of dimensions (A + q) x A and has rank A. Also H I N 1 ,  N  + 11 is a matrix of 
dimensions n' x (6 + p) and has rank Z which means that the PRC has been fulfilled. 

Necessity 
PRC is satisfied, thus 
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O n  multivariable partial realizarions 613 

It concerns finite generic sequences, so tha t  these matrices have full rank, which 
implies 

n' = min [N 'q ,  Np] = min [ ( N '  + l)q, N p ]  = min [ N ' q ,  ( N  + l)p] 

As (N' + 1)q > N'q and  (N + 1)p > N p  it follows 

n'= N p  = N'q s o  that H [ N f ,  N ]  is a square  matrix. 
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