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Abstract

Data informativity is a crucial property to ensure the consistency of the prediction error estimate. This property has thus
been extensively studied in the open-loop and in the closed-loop cases, but has only been briefly touched upon in the dynamic
network case. In this paper, we consider the prediction error identification of the modules in a row of a dynamic network using
the full input approach. Our main contribution is to propose a number of easily verifiable data informativity conditions for this
identification problem. Among these conditions, we distinguish a sufficient data informativity condition that can be verified
based on the topology of the network and a necessary and sufficient data informativity condition that can be verified via a rank
condition on a matrix of coefficients that are related to a full-order model structure of the network. These data informativity
conditions allow to determine different situations (i.e., different excitation patterns) leading to data informativity. In order to
be able to distinguish between these different situations, we also propose an optimal experiment design problem that allows

to determine the excitation pattern yielding a certain pre-specified accuracy with the least excitation power.
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1 Introduction

In prediction error identification, it is crucial that
the excitation yields informative data. Indeed, provided
that the model structure describes the true system
with a unique true parameter vector 6y, data infor-
mativity is a necessary and sufficient condition for the
prediction error estimate of 6y to be consistent (i.e.,
to converge to 8y with probability one when the num-
ber of data tends to infinity) [14]. In a nutshell, data
informativity is obtained when the excitation signal is
sufficiently rich for the prediction error to distinguish
the different models in the chosen model structure.
Due to its crucial importance, the literature provides
a large number of contributions on data informativity.
See e.g., [14,9,6,5]. In these papers, the identification
of single-input single-output (SISO) and multiple-input
multiple-output (MIMO) systems is treated in both
open-loop and closed-loop configurations. This paper
addresses data informativity in dynamic networks (i.e.,
another important configuration).

We will here consider the dynamic network framework
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introduced in [7]. In this framework, a dynamic network
is represented by a number N,,,q of nodes and each of
these nodes is characterized by a measurable scalar sig-
nal w; (j =1,..., Npoa). The signal w; at Node j is re-
lated to the signals wy, at other nodes (k # j) through
causal transfer functions Gy jx(2) (also called modules).
If Node [ is not connected to Node j, the correspond-
ing module G j;(2) is then equal to zero. The signal w;,
is also possibly a function of exogenous signals: an un-
known process noise v; and/or a known external excita-
tion signal ; added for identification purpose. These ex-
ogenous signals v; and r; are not necessarily present at
all nodes j. The dynamic network is thus entirely deter-
mined by the matrix Go(z) gathering the transfer func-
tions Go ;i (z) and its noise and excitation pattern i.e.,
the description of the nodes at which a process noise v;
is present (which is not an user choice) and of the nodes
at which an external excitation r; is present (which is at
least partly an user choice). In the literature, different
approaches have been developed to derive an (accurate)
model of (part of) the matrix Go(z). Like in closed-loop
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identification, we can distinguish, on the one hand, di-
rect approaches where the node signals wy, are used as
data for the identification of the elements of Go(z) [7]
and, on the other hand, indirect approaches where the
model(s) of the module(s) of Go(z) are back-computed
from an identified model of the closed-loop transfer ma-
trix between the external excitation signals and the node
signals [12].

Data informativity is as crucial for (prediction error)
dynamic network identification as it is for SISO and
MIMO identification. Indeed, in order to derive consis-
tent models in dynamic network identification, the noise
and excitation pattern must lead to sufficiently rich data
for the prediction error to distinguish the different mod-
els in the chosen model structure. However, until now,
even though some preliminary results can be found in
e.g., [7,10,8], data informativity for dynamic network
identification has only been briefly touched upon in the
literature. As opposed to data informativity, the concept
of network identifiability has been extensively explored
(see e.g., [12,17]). In a nutshell, a network is said identi-
fiable if we can uniquely retrieve (part of) the open-loop
representation of the network (i.e., Go(2)) from closed-
loop representations of the network (i.e., representations
of the tranfer between the exogenous signals and (some
of) the node signals). Network identifiability and data
informativity are thus clearly different concepts and a
deep analysis of data informativity conditions for dy-
namic network identification is thus absent in the liter-
ature. In this paper, we will address the data informa-
tivity issue for one particular dynamic network identi-
fication method: the so-called full input approach. The
full input approach pertains to the identification of all
the unknown modules of a row of the matrix Go(z) via
the node signals wy, (it is thus a direct dynamic network
method) [7]. The full input approach may be a way to
identify one single module in this row (see [7] for more
details).

In [7] (where the full input approach was introduced),
the issue of data informativity was tackled via a condi-
tion on the power spectrum matrix of the data used for
the identification. However, it is difficult to determine
if a given noise and excitation pattern yields data in-
formativity (or not) using this condition. Moreover, as
pointed out in [10], it is also difficult to interpret this
condition in order to determine at which node(s) excita-
tion signals r; have to be added if the current noise and
excitation pattern does not lead to data informativity.
In the present paper, our first contribution is to refor-
mulate the data informativity condition proposed in [7].
With this reformulation, data informativity can be in-
ferred, in some cases, with the sole excitation of the pro-
cess noises v; present in the network and, in other cases,
by the addition of filtered white noise excitations r; at
some nodes. The data informativity condition requires
that a part of the transfer matrix So(2) = (I — Go(z)) !
is full row rank. Using the results in [12], this rank con-
dition can be verified via the analysis of the graph of the
network (i.e., the interconnection structure of the net-

work). Using this graph interpretation, we will see that
it is then straightforward to verify if a given noise and
excitation pattern yields data informativity and that we
can also easily determine at which node(s) excitation
signals r; have to be added if the current noise and ex-
citation pattern does not lead to data informativity. We
will also observe that one noise and excitation pattern
leading to data informativity is the one proposed in [8],
but many other excitation patterns are also possible.

The main characteristic of the data informativity con-
dition proposed in [7] and of its reformulation derived in
this paper is that they ensure data informativity for any
model structure. This means that, if a noise and excita-
tion pattern respects this condition, it will ensure con-
sistent estimates of modules that can have infinite com-
plexity. While this could be seen as an advantage in some
cases, this also means that, when the to-be-identified
modules are of restricted complexity, many noise and ex-
citation patterns that would lead to data informativity
will not be detected by these conditions. In particular,
we will see that multisine excitation signals yielding data
informativity will never be detected by these conditions.

In order to be able to more finely detect when data
informativity is obtained, a second and important con-
tribution of this paper is to derive a data informativity
condition that takes into account the complexity of the
to-be-identified modules. This condition is a necessary
and sufficient condition to verify whether, for a given
noise and excitation pattern and for given multisine or
filtered white noise excitation signals, the obtained data
are informative for a full-order model structure of the
to-be-identified modules. This necessary and sufficient
condition has a rather complex form. However, using the
framework introduced in [5], we show that its verifica-
tion boils down to a rank condition on a matrix of coef-
ficients. When the data are not informative for a given
choice of external excitations, the insights developed in
[5] on this rank condition can be used to determine the
necessary measures to increase the informativity of the
data.

Using these data informativity conditions, we can de-
termine a set of situations in which the addition at cer-
tain nodes of excitation signals with given power spec-
tra leads to consistent estimates of the to-be-identified
modules, i.e. to models that converge to the true value
of the module when the number of data tends to infin-
ity. All these situations are thus equivalent when the
number of data tends to infinity. However, for a finite
data set, the respective accuracy can be much different.
Another contribution of the paper is to propose to use
optimal experiment design to distinguish between these
situations,. In particular, we will determine the particu-
lar excitation pattern that leads to the desired accuracy
of the to-be-identified modules with the smallest exci-
tation power. The use of optimal experiment design for
this purpose was first introduced in our paper [3] where
a very specific type of network is considered, namely the
interconnection of simple closed-loop systems. We here
extend this work towards the generic network descrip-



tion in [7]. It is to be noted that, in [15], a similar prob-
lem is also considered, but for an indirect identification
approach.

The sequel of the paper will be organized as follows.
In Section 2, we will describe in more details the con-
sidered dynamic network. In Section 3, the full input
approach will be presented and we will show that data
informativity is indeed crucial to derive consistent esti-
mates of the to-be-identified modules. In Section 4, we
will then present the more conservative data informa-
tivity conditions while, in Section 5, we will present our
necessary and sufficient data informativity condition.
Section 6 will pertain to the optimal experiment design
approach to detect an optimal excitation pattern.

Notations: In this paper, vectors of discrete-time signals
and matrices/vectors of discrete-time transfer functions
will be denoted with a bar: Z(t) and X (z) (¢ represents
the sample number and z denotes both the Z-transform
variable and the shift operator). We denote by x;(t)
(resp. Xix(2)) the i'" entry of the vector of signals Z(t)
(resp. the (i, k)-entry of the matrix of transfer functions
X (z)). To define parts of Z(t) and X (z), we will use cal-
ligraphic symbols such as X', ) to denote set of indexes
corresponding to the entries of Z(¢) or corresponding to
the rows and columns of X (z). The cardinality of a set of
indexes X will be denoted by ny. For a vector of signals
Z(t), Tx(t) is the vector of dimension ny obtained by
only conserving the entries in X' (Zx(t) = (21(t), z2(t))
for X = {1,2}). For a matrix of transfer functions X (z),
we will denote by Xx y(z) the part of X (z) obtained by
only conserving the rows in X and the columns in ). As
an example, if X = {1,2} and Y = {2, 3}, we have:

Xxy(z) = <X12(z) X13(2)>

X22 (Z) X23(Z)

When X or ) are singletons, we use the following short-
hand notation for Xy y(z): X;y(z) when X = {i} and
Xx k(2) when Y = {k}. Using these notations, we have
that wx (t) = Xx,y(2)Zy(t) for any sets X and ) when
w(t) = X (2)z(t). Note also that, when the matrix X (z)
pertains to the true dynamic network, we will use the
notation X¢(z). Consequently, entries of this matrix will
then be logically denoted Xg ;(z) and parts of this ma-
trix Xo x y(2). In addition, the matrix I,, denotes the
identity matrix of dimension n and diag(aq, ..., a,) de-
notes the matrix of dimension n x n:

al 0 0
0 .0
0 0 an

For a matrix A, AT denotes the transpose of A and A*
its conjugate transpose. Finally, for a quasi-stationary

signal z(t) [14], Ex(t) 2 limy oot SN, Ex(t) (E is

the expectation operator).

2 Network description

In this paper, we consider the problem of identify-
ing particular modules of a stable dynamic network.
This dynamic network is made up of Np,,q nodes
that are each characterized by a scalar valued mea-
surable signal wg(t) (K = 1,..., Nmoa). The vector
w(t) = (wi(t), wa(t),...,wn,,,(t))T obeys the following
equation [7]:

w(t) = Go(z) w(t) +7(t) + Ho(2)e(t) (1)
=0(t)

0 GO,IQ(Z) GOlemod (z)
Go(2) = Go,21(2) 0 . Go2N,,,0(2)
Go,Npoa1(2) Go,Npoa2(2) oo 0

(2)

Ho(z) = diag (Ho,1(2), Ho2(2), -, HoN,,..(2)) (3)
where all the non-zero entries in (2) are proper transfer
functions and where 7(t) = (r1(t),r2(t), ..., n,,., ()T
is a vector of external excitation signals that can be
freely chosen by the user, e.g., for identification pur-
poses (7(t) = 0 in normal operations). In (1), the vec-
tor v(t) = (v1(t),va(t), ..., vn,,,,(t))T represents the pro-
cess noise acting on the network. This process noise
is modeled as 9(t) = Ho(z)e(t) where Hy(z) is a di-
agonal transfer matrix with diagonal elements Hg ()
(k =1,..., Nimoa) that are all stable, inversely stable and
monic and where &(t) = (e1(t), e2(t), ...,en,,., (t))T with
er(t) (k=1,..., Nmoq) being zero-mean white noise sig-
nals of variance o2, (k = 1,..., Nmoa). The covariance
matrix Fe(t)el (t) of é(t) will be denoted by ! 3. We
will not impose any constraint on X i.e., ¥g is neither
required to be diagonal nor strictly positive definite.

Let us also make the following additional standard
assumptions on the network:

Assumption 1 Consider the network described by (1)-
(2)-(3). We assume that &(t) is independent of 7(t) and
is also such that Ee(t)eT (t — 1) = 0 for all T # 0. We
also assume that the network is well-posed with a stable

closed-loop description So(z) = (In, ., — Go(2))™%, so
that the network can also be expressed as
w(t) = So(z) (F(t) +0(t)) . (4)

The above description of the network allows for some
elements vy (t) of ¥(t) to be identically zero. We indeed
just have to choose 02, = 0 and Hy x(z) = 1 in this case.
In this paper, we will suppose that we know which vy (¢)
are equal to zero and which v (t) are not equal to zero.

L The variance agk (k=1,..., Nmoq) of the white noise en-
tries ey, of €(¢) are the diagonal elements of Y.



For the sequel, let us denote by V the set of indexes k
corresponding to nodes such that ng # 0 i.e., the set of
nodes where ey (t) # 0 and vg(t) # 0. Using the notations
introduced at the end of Section 1, vy (t) (resp. éy(t))
corresponds to the non-zero elements of o(t) (resp. &(t))
and we have that oy (t) = Ho p.y(2)éy(t). In the sequel,
the covariance matrix Eéy (t)eL(t) of éy(t) will be de-
noted by 3oy > 0. For the sequel, it is important to note
that this covariance matrix (as any other positive semi-
definite matrix) can be decomposed as Xy y = Eo,onTy
where =y is a matrix with ny rows and a number of
columns equal to the rank of ¥g y.

Note also that, similarly to #(t), the excitation vec-
tor 7(t) that we use for identification purpose can also
contain zero elements. Let us thus denote R the set of
indexes k corresponding to nodes such that r; # 0.

3 Full input identification approach

As already mentioned, our objective is to use predic-
tion error identification to accurately identify the (un-
known) modules in arow of the matrix Go(z), say Row j.
We will use for this purpose the Multiple Input Single
Output (MISO) approach introduced in [7] i.e., the so-
called full input approach. Before presenting this identi-
fication approach in more detail, let us introduce some
concepts related to the j** row of Gy. This row can con-
tain entries Gy ;i that are known to be identically zero,
entries that are both known and not equal to zero and,
finally, entries that are unknown. For the sequel, we need
to define two additional sets of indexes related to these
types of elements: C is the set of indexes k corresponding
to entries Gy jr(z) that are both known and not equal
to zero, while D is the set of indexes k corresponding to
unknown entries Gy ;1 (2).

Let us now present the MISO identification problem
considered in this paper. For this purpose, let us define,
using the notations introduced at the end of Section 1,
the signal y;(t) as follows:

>

yi(t) = w;(t) = r;(t) = Goj(2) we(t).  (5)
Since Gy j k(z) is arow vector containing the known non-
zero elements of the j* row of Go(z), the signal y;(t) is
a computable quantity that obeys (see (1)):

yj(t) = Gojp(2) wp(t) + Ho;(2) e;(t)  (6)
where Gy ;p(z) is a row vector of dimension np con-
taining the unknown elements of the j row of Gy(z).
As already mentioned, the identification approach will
pertain to the identification of a model of Gy ;p(2)
and a model of Hy ;(z) and, as evidenced by (6),
this identification will be performed using a data set
ZN = {y;(t), wp(t) | t = 1...N}. Note that (6) has the
classical form of a data-generating system in MISO (pre-
diction error) identification since the measurable output
y;(t) is made up of the combination of an unknown

stochastic disturbance Hy ;(2)e;(t) and of a contribu-
tion of the known input wp(¢) through an unknown
vector of transfer functions Gy ; p(2). Since wp(t) may
be correlated with e;(t), we are moreover in a situation
that is very similar to direct closed-loop identification
[14]. As in direct closed-loop identification, we will here
also need in many cases to require that Go ; p(2) is sta-
ble [14]. We will for simplicity make that assumption in
the sequel.

Let us thus suppose that we have collected on the

network (1), the data set ZV and that we have defined
a model structure M = {G, p(z,0), H;(z,0) | 0 € ©}
where G p(z,0) (resp. H;(z,0)) is amodel for Gg j p(z)
(resp. Ho j(z)) and © is the set of all parameter vectors
0 leading to a stable G p(z,6) and to a monic, stable
and inversely stable H,;(z,6). In the sequel, M is also
assumed to have the following property:
Assumption 2 The model structure M =
{G;p(2,0), Hi(2,0) | 6 € O} has the property tha
there exists a unique parameter vector 8y € © such that
Gjy’D(Z, 90) = GO,j,D(Z) and Hj (Z, 90) = HO,j (Z)

Using the data set ZV and the model structure M, we
can then obtain an estimate 6 of 6y using the following
prediction error criterion [14]:

N
R 1 )
Oy = arg min tE:1 € (t,0) (7)

e (t.0) = H; ' (2,0) (y;(t) = Gjp(2,0)wp(t)) . (8)

Using this estimate éN, we obtain a model Gjp(z, éN)
of Go,jp(z) and a model Hj,(z, ) of Hy ;(2).

Remark. The MISO approach presented above can also
be used if we are only interested in models of part of
Go,j,p(z) [7]. Moreover, this approach can also be re-
peated for each row in order to get a model of the full
matrices Go(z) and Hy(z). The data informativity con-
ditions that we will develop in the sequel are thus also
relevant for these two particular situations. [ |

In the sequel, we will determine the conditions under
which 0 is a consistent estimate of 6, which means that
On converges to 6y with probability one when N — oc.
The consistency of the estimate (7) can also equiva-
lently be established by proving that 6y is the unique
minimum of Ee€3(t,0) [14]. We will prove this in two
steps, i.e. we will first prove that 6y minimizes Ee;(t, 6)
and then we will determine the conditions under which
this minimum is unique. The results will depend on
whether there is noise present in Node j. Let us thus
suppose that this is indeed the case. The simpler case
vj(t) = e;(t) = 0 is treated in Appendix A of [2].
Assumption 3 In the network (1), the variance Uzj of

the noise e; at Node j is such that afj 20 (G €eV).



As shown in the following proposition, §y is a mini-
mum of Ee? (t,0) under Assumptions 1, 2 and 3 if we add
a delay condition similar to the one required for the di-
rect closed-loop identification method [14] (see also [7]).

Proposition 1 Consider the stable MISO system (6)
that is an element of a network (1) satisfying Assump-
tions 1 and 3 as well as the sets V and D defined in
Sections 2 and 3, respectively. Consider the prediction
error (8) computed based on data collected on this net-
work and a model structure M satisfying Assumption 2.
Then, 6y is a minimum of Ee?(t,@) if, for all 0, all the
entries of the vector of transfer functions (Go jp(z) —
Gip(2,0)S0p1v(2) are either zero or contain at least

one delay. Moreover, all (eventual) other minimizers 0*
of E€3(t,0) are such that €;(t,0%) = €;(t,00) = e;(t). =

Proof. The proof is relatively straightforward and can
be found in [2]. [

Let us now consider the conditions under which 6y is
the unique minimum of Ee? (t,6). Due to the property
stated at the end of Proposition 1, this will be the case
if, for each 6 € © such that E(e;(t,0) — €;(t,60))? = 0,
we have § = 6. Due to Assumption 2, this condition

will be respected if, for each (G, p(z,0), H;(z,0)) € M
such that E(e;(t,0) — €;(t,60))* = 0, we have

Go,jp(2) = Gjp(2,0) =0 and Ho;(2) - Hj(2,0) :( g

9
This property is generally called data informativity in
the literature [14]. Let us formally define this notion.
For this purpose, let us introduce the following notation
using (8):

wp (t)
(10)

5(1,0) = W (2,0)3(t) = (W, (2 6), W(2, ) ( i (t) )

Wy(2,0) = H; '(2,0) and Wu(z,0) = —H; ' (2,0)G.n(z,0)
(11)

Definition 1 Consider the data Z(t) = (y;, wh(t))T
collected on a network (1) satisfying Assumptions 1 and 3
and the condition in the statement of Proposition 1. Con-
sider also a model structure M satisfying Assumption 2.
Define the set:

A = {AW(2) = W(2,0) — W(z,600) | 0 € O} (12)

Then, the data Z(t) = (y;, wh(t))T are said to be infor-

mative wrt. M when, for all AW (z) € A, we have:

E(AW(2)2(t))’ =0 = AW(z) =0  (13)

We can summarize the above discussion in the follow-
ing proposition whose proof is straightforward.

Proposition 2 Consider the stable MISO system (6)
that is an element of a network (1) satisfying Assump-
tions 1 and 3. Consider the prediction error (10) com-
puted based on data Z(t) = (y;, wh(t))T collected on this
network and a model structure M satisfying Assump-
tion 2. Then, 0y is the unique minimum ofEe?(t, 0) if, in
addition to the delay condition in the statement of Propo-
sition 1, the data 7(t) = (y;, wh(t))T are informative
wrt. M (see Definition 1). [ |

We have now all the elements to derive conditions for
data informativity. We will see that data informativity
can be obtained by adding a quasi-stationary excitation
signal 7(t) at a number of nodes, but also in certain
situations, using the sole excitation of the process noises
vi(t) i.e., 7(t) = 0 (the so-called costless identification
[4.5]).

4 Simple (but only sufficient) data informativ-
ity conditions
4.1 Results

We will start by deriving simple, but only sufficient
data informativity conditions. For this purpose, let us
first recall the data informativity condition proposed in
the paper [7] where the identification method presented
in Section 3 has been introduced.

Proposition 3 ([7]) Considerthe dataz(t) = (y;, wh(t))T

collected on a network (1) satisfying Assumptions 1
and 3. Consider also the following condition on the
power spectrum matriz @z (w) of T(t):

Oz (w) > 0 at almost all w. (14)

Then, we have that, irrespectively of the complexity of
Go,jp(2) and Hy ;(z), the condition (14) ensures data
informativity with respect to a model structure M satis-
fying Assumption 2. ]

Proof. This result is a direct consequence of Defini-
tion 1. Indeed, the left-hand side of (13) can be rewrit-
ten as o= [T AW (/)@ (w) AW (e/“)dw = 0 and it
is clear that, if (14) holds, this relation implies that
AW (z) = 0 and this is true whatever the complexity of
the vector AW (z) and thus whatever M. [ |

Proposition 3 means that, if a noise and excitation
pattern yields (14), this noise and excitation pattern will
ensure consistent estimates of modules that can have in-
finite complexity. While this could be seen as an advan-
tage in some cases, this also means that, when the to-be-
identified modules are of restricted complexity, many ex-
citation patterns that would lead to data informativity



will not be detected by this condition. This also means
that to ensure (14) will require a larger number of ex-
citations v and/or rp than what is strictly necessary
to ensure data informativity for a specific model struc-
ture M of restricted complexity.

In other words, (14) is not a necessary condition
for (13) to hold and is thus conservative. Moreover,
based on (14), it is difficult to determine if a given noise
and excitation pattern yields data informativity or not.
Moreover, as pointed out in [10], it is also difficult to
use (14) in order to determine at which node(s) excita-
tion signals r; have to be added if the current noise and
excitation pattern does not lead to data informativity.

In this section, we will reformulate (14) in such a way
that the objectives presented in the previous paragraph
can be achieved. Let us first start with the case where
we can assume that the network satisfies ¥, > 0 i.e,
the case of networks where éy(t) is a full rank vector
of signals. With this additional assumption on the net-
work, we can derive Propositions 4 and 5. Proposition 4
pertains to the case where 7(t) = 0 (costless identifica-
tion) and Proposition 5 to the case where, besides the
costless excitation of v (t) (k € V), we also add, at the
nodes k € R, external excitations .

Proposition 4 Consider the framework of Proposi-
tion 3 for a network (1) with oy > 0. Consider also
the set V defined at the end of Section 2. Then, in the
case where the excitation vector 7(t) is equal to zero, (14)
holds if the following condition is satisfied
(i) the set V describing the nodes where a distur-
bance vy is present is such that, at (almost) all
frequencies w, SO,Dy\{j}(ej“) is full row rank i.e.,
rank(So,pw\ 53 (€’*)) = np
|

Proof. See Appendix A. [ ]

In the next subsection, we will show how Condition (i)
of Proposition 4 can be verified in practice. Since the
matrix Sy p ;3 has dimension np x (ny — 1), we can
nevertheless right away note that a necessary condition
for Condition (i) of Proposition 4 to hold is that ny—1 >
np. Since j € V, this necessary condition will be satisfied
if, in addition to the noise v;, there are at least as many
other noise sources vy, (k # j) as modules to be identified
in Gy ;p (ie., np).

If Condition (i) of Proposition 4 is not satisfied, the
next proposition shows that we can obtain data z(t)
satisfying (14) by adding external excitation signals r
at a certain number of nodes.

Proposition 5 Consider the framework of Proposi-
tion 8 for a network (1) with oy > 0. Consider also the
sets V and R defined at the end of Section 2. Then, (14)
holds if the following conditions are both satisfied:

(i) the set R describing the nodes where an excitation sig-

nal ri s present is chosen in such a way that the set
of indexes @ = R U (V\{j}) has the property that, at
(almost) all frequencies w, rank(Syp,o(e’¥)) = np

(ii) the power spectrum matriz @z, (w) of the excitation

vector Tr(t) is such that ®r (w) > 0 at almost allw W
Proof. See Appendix B. [ |

As already mentioned, the next subsection will give a
simple method to check Condition (i) of Proposition 5.
Note here also that a necessary condition for Condi-
tion (i) of Proposition 5 to hold is that ng > np.
Consequently, the sum of the number ng of external ex-
citation noises and of the number of noise processes vy,
(with k € V\{j} and k ¢ R) must at least be equal to
the number np of modules to be identified in Gg ;p. It
is also important to note that Condition (ii) in Propo-
sition 5 shows that, if external excitation signals 7
are necessary to ensure data informativity via Propo-
sition 5, these excitation signals r, must be (filtered)
white noises.

If we cannot assume X y > 0, then we cannot rely, as
in Propositions 4 and 5, on the noises v with k& € V\{j}
to ensure (14) (and thus data informativity). This is
summarized in the following proposition.

Proposition 6 Consider the framework of Proposi-
tion 5, but for a network with oy > 0. Then, (14) holds
if the following conditions are both satisfied:

(i) the set R describing the nodes where an excitation sig-

nal ry, is present is chosen in such a way that, at (al-
most) all frequencies w, rank(Sop r(e’*)) = np

(ii) the excitation vector T (t) satisfies Condition (ii) of

Proposition 5 i.e., its power spectrum matriz P, (w)
is such that @r, (w) > 0 at almost all w. [

Proof. See Appendix C. ]

In order to satisfy the conditions of Proposition 6, we
will thus require at least np external excitations rj un-
der the form of (filtered) white noises.

4.2 Verification of the data informativity conditions
and determination of an excitation pattern

In order to use the results in the previous subsection
to infer data informativity for a certain noise and exci-
tation pattern, the main difficulty is the verification of
Condition (i) in Propositions 4, 5 and 6. The submatri-
ces of Sp(e?*) involved in these rank conditions are in-
deed functions of the unknown matrix Go(e’*). This is
however not a crucial problem since [12] proposes a sim-
ple approach based on the graph of the network to verify
rank conditions of this type.

This result of [12] is given in Lemma 1 below. Before
presenting this lemma, let us first recall some notions of



graph theory [12]. The graph of the network can be ob-
tained by drawing a directed edge from Node k to Node [
if Gor(2) # 0. The graph is therefore a representation
of the topology of the network (i.e., its interconnection
structure). A path from Node k to Node I # k is a
series of adjacent edges that starts in Node k and ends
in Node [. Vertex-disjoint paths are paths that do not
pass through the same nodes/vertexes. Finally, in the
framework of this paper (see (1)), there is always a path
from Node k to Node k since r, and v, have a direct
influence on wy,.

/\_,/"ﬂ 4
1 f34—2}
\/—\/ y

Fig. 1. Graph representation of (15). Each circle represents
a node and the edges represent the structure of Go(z).

Example 1 Let us consider a network described by
Nimod = 3 nodes and the following matriz Go(z):

0 0 Go,13(%)
0 0 0 (15)
Go,31(z) Go,32(2) 0

The graph of this network is represented in Figure 1. In
this figure, we see that there is no path from Node 1 to
Node 2 and mo path from Node 8 to Node 2, but there
exists, e.g., paths from Node 3 to Node 1 and from Node 2
to Node 1. Let us now e.g., choose Y = {2,3} and X =
{1,2} and let us observe that there are two vertex-disjoint
paths from the nodes in ) to the nodes in X, namely the
path 2 — 2 (since ro /vs has a direct influence on ws ) and
the path 3 — 1. If ¥ = {2,3} and X = {1,3}, there is
only one vertex-disjoint path from the nodes in Y to the
nodes in X : e.g., the path 3 — 3. The other paths from )
to X (i.e., the path 2 — 3 — 1, the path 2 — 3 and the
path 3 — 1) all contain Node 3 and are thus not vertex
disjoint with the path 3 — 3. |

Lemma 1 ([12]) Consider the graph of a network and
two arbitrary sets of indexes X and Y (of respective
cardinality ny and ny). Suppose that, in the graph of
the network, there are nx vertez-disjoint paths from the
nodes in Y to the nodes in X. Then, for almost all Go(z)
corresponding to the topology of the network, the part
So,x,»(e7) of So(e7*) = (In,,q — Go(e?))™" s full
row rank at almost all w.

Lemma 1 gives a simple graphical method to check the
rank conditions in Propositions 4, 5 and 6. However, as
mentioned in this lemma, the verification will be done
in a generic manner i.e., for almost all Go(e’*). Indeed,
it cannot be excluded that, even if they have the cor-
rect topology, very specific values of Go(e’*) can lead

to situations where some submatrices of Sy(e’“) have a
rank smaller than the generic rank given by Lemma 1
(see Section 4.5 for an example).

Since, for any k, there is always a path from Node k
to Node k, we have also the following useful result:

Lemma 2 Consider the graph of a network and two ar-
bitrary sets of indexes X and ) (of respective cardinality
nxy andny). Then, if X C Y, there is always ny vertex-
disjoint paths from the nodes in Y to the nodes in X. W

Let us come back to our data informativity problem.
Using Lemma 1, Condition (i) of Proposition 4 is gener-
ically verified if there are np vertex-disjoint paths from
the nodes in V\{j} to the nodes in D. If this is satisfied,
then we have data informativity with the sole excitation
of the unknown process noises in the network. If this
is not satisfied, data informativity can be obtained by
adding external excitations 7y at nodes k£ making the set
Q = R UV\{j} such that there are np vertex disjoint
paths from the nodes in Q to the nodes in D (Condition
(i) of Proposition 5).

Using Lemma 2, we see that Condition (i) of Proposi-
tion 5 holds if an external excitation 7 is applied at (at
least) all the nodes k such that k € D and k & (V\{j}).
This particular choice for R is equivalent to the data
informativity condition proposed in Theorem 2 in [§]
(when this result is particularized to the case of a diago-
nal Hy(z)). As will be evidenced in the next subsection,
note however that, in general, many other choices for R
can lead to the desired number of vertex-disjoint paths.

Let us now briefly turn the attention to Proposition 6.
When we cannot make the assumption that g, > 0,
data informativity can be verified by checking that there
are np vertex-disjoint paths from the nodes in R to the
nodes in D. When V\{j} # 0, verifying this condition
will require a larger number of external excitation signals
7, than in the case where we can make the assumption
that 207\; > 0.

Before giving a number of illustrations of these results,
let us finally note that the number of vertex-disjoint
paths between two sets of nodes in the graph of a network
can also be determined algorithmically [12]. This is an
important feature for networks with a large number of
nodes.

4.3 First illustration

We consider first a network with Go(z) given by (15)
(see Figure 1) for which we wish to identify the third
row (i.e., j = 3). Let us assume that £ = @) and that
V = {3}. This means that we want to identify con-
sistently the transfer functions Gy 31(2), Gos2(%) and
Hj3 ¢(2) and that the only unknown process noise in the
network is v3(t) (Assumption 3 is thus respected)
thus deduce that D = {1,2} and that 39, = 02, > O
We can thus use Propositions 4 and 5 to check data in-
formativity.

Since V\{j} = 0, Condition (i) of Proposition 4 can-



not hold. Let us thus deduce an excitation pattern R
yielding data informativity using Condition (i) of Propo-
sition 5 (and Lemma 1). Since np = 2 and Q = R,
the cardinality nk of R must be at least equal to two
to get two vertex-disjoint paths from the nodes in Q
to the nodes in D. Using Lemma 2, an obvious choice
is to choose D = {1,2} C R. This leads to two pos-
sible choices R = {1,2} and R = {1,2,3}. However,
this is not the only choices and having other choices can
be important in practice. Indeed, it may be impossible
to add an excitation at Node 1. In this case, we could
also choose R = {2, 3} since there are also two vertex-
disjoint paths from the nodes in R = {2, 3} to the nodes
in D = {1,2} (see Example 1 and Figure 1). Finally, let
us also note that we cannot infer data informativity with
Proposition 5 for the choice R = {1, 3} since there is no
path from the nodes in R to Node 2 € D (we have thus
only one vertex-disjoint path from the nodes in R to the
nodes in D: the path 1 — 1). It is obvious that this par-
ticular choice for R cannot lead to data informativity
since, in this situation where r2(t) = v2(t) = 0, we have
that wo(t) = 0 and thus it will be impossible to identify
Go32(2).

\ \
/’ /’

3

Fig. 2. Graph representation of the network in Section 4.4.

4.4 Second illustration

Let us now consider another example to stress even
more the importance of having enough vertex-disjoint
paths between the nodes in @ and the nodes in D. Con-
sider for this purpose the network with N,,,q = 6 nodes
described by the graph given in Figure 2. Let us as-
sume that we wish to identify Row 1 (i.e., j = 1), that
K = 0 and that V = {1}. Consequently, D = {2,3}
and Xoy = Ugl > 0. Here also, Proposition 4 cannot be
used since V\{j} = 0. Let us thus consider adding exter-
nal excitations rj to the network. According to Proposi-
tion 5, the locations R of these external excitations must
be chosen such that there are np = 2 vertex-disjoint
paths from the nodes in R to the nodes in D. It is clear
that R = {2, 3} satisfies this property since, in this case,
R = D (Lemma 2). The choice R = {2,6} will also lead
to two vertex disjoint-paths (i.e.,2 — 2and 6 — 4 — 3).
The same can be said of R = {2,4}. However, when
R = {5,6}, if there are paths between the nodes in R
and the ones in D, we have only one vertex-disjoint path

since, to go from R to D, we must always pass through
Node 4. To understand why this last choice of R is prob-
lematic, let us notice that, for the identification of the
modules Gy 12(z) and G 13(2), these two excitations 5
and 7g can be equivalently replaced by a unique excita-
tion 74(t) = Go,5(2)r5(t) + Goue(2)76(t) at Node 4.

Let us finally stress that, both in this subsection and
in the previous one, the excitation vector rz(t) must
of course also satisfy Condition (ii) of Proposition 5 to
effectively lead to data informativity. This can be e.g.,
achieved by choosing each excitations r, (kK € R) as
independent white noises.

Fig. 3. Graph representation of the network in Section 4.5.

4.5 Third illustration

Let us now illustrate the issue mentioned below
Lemma 1 using an example inspired by [12]. Consider
for this purpose the network whose graph is represented
in Figure 3. We suppose that j = 5, that K = (), that
V = {1,2,5} and that 3¢ > 0. In this network, we
have w5(t) = G0753(z)w3(t) + G0754(Z)U)4(t) + ’1)5(t).
Consequently, D = {3,4}. Let us use Proposition 4 to
see whether data informativity can be obtained with
the sole excitation of the process noises v1, vo and vs.
We observe that V\{j} = {1,2} and that there are
two vertex-disjoint paths from V\{j} to D (1 — 3
and 2 — 4). Consequently, using Proposition 4 and
Lemma 1, we can conclude that the noise pattern
V = {1,2,5} yields data informativity for almost all
Go(z) having the topology described in Figure 3. To
verify this result, let us derive the matrix Sp p v\ (;}
involved in Condition (i) of Proposition 4:

G0,31(Z) G0,32(Z) >

SO,D,V\ '}(2) = (
K Go,41(2) Go2(2)

This matrix has clearly a generic rank equal to two. How-
ever, when G 31(2)Go,42(2) = Go,41(2)Go,32(2) (which
is clearly a singular case), this rank reduces to one and
Condition (i) of Proposition 4 does not hold. Indeed, in
this case wp(t) = So.p (5} (2)vy(t) has a power spec-
trum matrix that is rank-deficient at all w and (14) can
therefore not be respected.



Note that, even when Go 31(2)Go,42(2) = Go,41(2)Go 32(2),

data informativity can be inferred via Proposition 4 if,
in addition, a process noise vy is also present at Node 4
ie,V =1{1,2,4,5}. Indeed, in this particular situation,

Go31(2) Gosa(z) 0 )

SO,D,V\ i (2) = (
& Go,41(2) Goaa(2) 1

and, in this case, SOD,V\{J»} is full row rank for all G ().

Remark. As shown in Section 4.6 of [2], the data in-
formativity conditions developed in this section can be
linked to the network identifiability condition of [17].

5 Necessary and sufficient condition for data in-
formativity

5.1 Results

As mentioned in the previous section, the data infor-
mativity conditions derived in Section 4 are conservative
when the model structure M has a restricted complex-
ity. In this section, we will derive a necessary and suffi-
cient condition for data informativity for a given model
structure (of restricted complexity).

For this purpose, we will need to distinguish the mul-
tisine and filtered white noise contributions in the exci-
tation vector 7(t) in more details. For this purpose, let
us introduce the set of indexes R, as the set of indexes
k such that ry contains a multisine contribution and the
set of indexes R,, as the set of indexes k such that ry
contains a filtered white noise contribution. The vector
Tr.(t) corresponding to R, is thus a vector for which
each entry is a multisine while the vector 7, (t) corre-
sponding to R,, can always be expressed as:

P, (1) = F(2)alt) (16)

with F(z) a known matrix of transfer functions of di-
mension ng, X n, and a vector §(¢) of dimension n, such
that ®4(w) = I, (i.e., q(t) is a vector of independent
white noises of variance 1). As an example, if Ny, ,q = 3
and 7(t) = (0, cos(0.1t), cos(0.2t) + m(t))T with m(t) a
filtered white noise, then R = {2,3}, Rs = {2,3} and
R, = {3}. Moreover, 7r_(t) = (cos(0.1t), cos(0.2t))T
and 7r, (t) = m(t) and the filtered white noise m(t) can
always be expressed as in (16) (with ny = 1). Note that
R=RsURn,.

We will also need to rewrite the data Z(t) =
(y;, wh(t))T (see Definition 1) in an appropri-
ate manner. Recall that y;(t) = w;(t) — r;(t) —
Go,jx(2)wk(t) (see (5)). Using (16) and the fact that,
for any set of indexes X, wx(t) = So x r.(2)r.(t) +
So.x.r, (2)TR, (t) + So.x.v(2)0y(t), it is clear that we
have that:

2(t) = Tov(2) o (t) + Xor, (2) F(2) q(t) +d(t) (17)

Xor,(2) = (Tor,(2) — My)

d(t) = (To,r. (2) — Ms)rr, (1)
where M,, and M, depend on the excitation signal r;
at Node j. When j € R, M is a matrix of dimension
(14 np) x ng, such that M, 7z, (t) = (r(t),0,...,0)"
with 75 (¢) the multisine contribution in ;(t). When j €
Ry, M, is a matrix of dimension (1 + np) x ng, such
that M, 7r, (t) = (r(t),0,...,0)" with 77 () the filtered
white noise contribution in r;(t). When j ¢ R (resp.
j € Ry), we have My = 0 (resp. M,, = 0). In (17),
we have also that, for any set X', Ty x(z) is a matrix of
transfer functions of dimension (1 4+ np) X ny given by

To () = (go,j,X(Z) - éo,j,ic(z)go,lcx(z)) (18)

gO,D,X(Z)

Let us also finally observe that, in (17), d(t) is a vector
of dimension 1+ np for which each entry is a multisine.

The notations introduced in (17) seem complex. How-
ever, for the very classical case where £ = () and r; = 0,
they are much simplified ? since M = M,, = 0 and (18)
reduces to the following submatrix of Sp(z):

(19)

Tox () = ( So.5.x(e”) )

So.p,x(e7%)

We have now all the elements to derive the following
proposition that gives a necessary and sufficient condi-
tion for data informativity. Like in Section 4, we will
have different results in the cases where we can assume
Yo,y > 0 and the cases where we cannot. Proposition 7
gives the result for the case ¥y > 0. In this proposi-
tion, we observe that data informativity can be obtained
by adding a quasi-stationary excitation signal r(¢) at a
number of nodes, but also in certain situations, using the
sole excitation of the process noises vy (t) i.e., 7(t) = 0.

Proposition 7 Consider the network (1) described in
Section 2 and satisfying Assumptions 1 and 3 and for
which we can also assume that Xoy > 0. Consider also
the sets V and R defined at the end of Section 2. Con-
sider finally Definition 1 and observe that we have expres-
sion (17) for z(t). Then, in the case where the excitation
vector 7#(t) is equal to zero, the data Z(t) = (y;, ’L_T}%(t))T
are informative wrt. M if and only if, for all AW (z) €
Ay,

AW (2) Tov(z) = AW(2) =0 (20)
In the case where 7(t) # 0, the data Z(t) = (y;, wp(t))"

are informative wrt. M if and only if, for all AW (z) €
A,

2 This is the main reason why (5) is used to derive (17)

instead of (6).



If F(e9%) is full row rank at almost allw, the second line
of the left hand side of (21) can be equivalently replaced
by AW (z) Xor, (2) =0. [ |

Proof. See Appendix D. ]

In Proposition 7, we suppose, for the sake of generality,
that both Ry # 0 and R,, # 0. In the classical case
where one of these two sets is empty (i.e., T contains
only multisines or only filtered white noises), we have
to remove the corresponding term in the left-hand side
of (21) (e.g., we have to remove the second line of the
left-hand side of (21) when R,, = 0).

Let us now consider the case of networks where we
cannot suppose that ¥y > 0.

Proposition 8 Consider the framework of Proposi-
tion 7, but with Xoy > 0. In this case, when 7(t) = 0,

the data Z(t) = (y;, zﬂ%(t))T are informative wrt. M if
and only if, for all AW (z) € A,

AW(Z) Toyv(z) H()’v,v(z) EO,V =0= AW(Z) =0
where Zgy is such that Xy = Eova(q)jv (see the end of
Section 2). In the case where 7(t) # 0, the data T(t)

(Y5, @g(t))T are informative wrt. M if and only if, for
all AW (2) € Ay,

Proof. See Appendix E. ]

As we will see in the next subsection, the framework
that we recently developed in [5] allows to verify whether
the data informativity conditions of Proposition 7 (and
of Proposition 8) are satisfied in a given situation. By
given situation, we mean a given network configura-
tion, a given M satisfying Assumption 2, a given ) and
given Tr_(t) and 7z, (t). Like in the previous section,
the data informativity conditions derived in this sec-
tion for dynamic network identification are a function
of the unknown true transfer matrix Go(z) (and also
of Hy(z) and gy in the case where we cannot assume
that 3oy > 0). This is an important difference with
the previous results on data informativity developed
for open-loop and closed-loop identification (see e.g.,
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[14,9,6,5]). Similarly as in Section 4.2, this drawback
will be circumvented by verifying that the conditions of
Propositions 7 and 8 are satisfied in a generic manner.
In this case, by replacing Go(z), Ho(z) and %oy by
any full-order models of these unknown quantities (see
later).

Remark. In the case where we cannot assume that ey,
is a full rank vector of signals (Proposition 8), assuming
to know a model of £y > 0 can be seen as a strong as-
sumption. If such a model is unknown, we can then de-
cide to disregard the contribution of the process noises
vi (k € V) in the informativity of the data (like in Propo-
sition 6) and use the following data informativity condi-
tion instead of the one given in Proposition 8:

f(z)zo — AW(2) =0

E (AW (2) d(t))* =0

{ AW (2) Ko, (2)
In this case, the verification of the data informativity
condition only requires a full-order model of G (z) (such
as in the case of condition (21)) [ |

5.2 Using the necessary and sufficient conditions of
Propositions 7 and 8

As mentioned above, we can verify the rather com-
plex necessary and sufficient conditions in Propositions 7
and 8 by following an approach similar to the one in [5].
We will first present the procedure to verify the condi-
tions in Proposition 7.

Let us first recall two straightforward technical re-
sults that are used in [5]. The first technical result is
the fact that any polynomial matrix N(z) (i.e., a matrix
whose entries are polynomials in 2~1) can be factorized
as N(z) = AnZn(z) with Ay a matrix of coefficients
and Zn(z) a matrix having the following properties. If
each entry of Column & of N(z) is equal to zero, then
each entry of Column k of Zy(z) is also equal to zero.
The remaining columns of Zy (z) form a block-diagonal
matrix for which each diagonal block is a column vector
whose entries are equal to z7™ with a different integer
m > 0 for each entry of the same column vector. Let us
give an example of this first technical result for a N(2)
of dimension 2 x 3:

) ) 2720 0
22720 54327 253
L, = 001
0 0 4z 004 .
0 0z

—_——
=Zn(z)

=N(z) =Ay

The second technical result uses Euler formula i.e.,
A cos(wit +U) = 1 (Aed¥elrt + AemI¥eIw1t) Using
this formula, any multisine vector 5(¢) whose k*" element
sk (t) can be expressed as si.(t) = >, Ag cos(wit+Vy)
can be factorized as 5(t) = B ¢(t) with B a time-
independent and complex matrix (that is a function



of the amplitudes Ay and the phase shifts Wy;) and
é(t) — %(ejwlt7 e—ju.)lt7 engt, . e—jwnt)T
As shown in Lemma 6 in [5], for the classical model
structures M that are used in prediction error identifi-
cation, we can always find a left factorization of AW (z)
ie., AW(z) = Q7 '(2)Y(z) with Y(z) a row polynomial
vector and )(z) a monic polynomial. Let us apply the
first technical result on the row polynomial vector T(z):
Y(z) =67 Zy(2) (22)
with § a vector of coefficients that are functions of § and
0o (see Definition 1). Let us illustrate this in the case

where the model structure M satisfying Assumption 2
is given by H;(2,0) =1/(1 +az~1) and:

b1271 b2Z71
l14+az7! 1+az"?

Gjp(z,0) = <

We have thus 6 = (a, by, b2)T. Using (11), the left factor-
ization Q~1(2)Y(z) of AW (2) is here given by Q(z) = 1
and Y(z) = (&zz_l7 Sbiz71, 6bgz_1) with da = a — aq,
§b1 = b1,0—by and dby = by g — b2 (0o = (ag, b1,0,b2,0)7).
Defining 6 = (da, 6by, dbs)T, we have thus:

2L 0 0
T(z)=6"| 0 27 0 (23)
0 0 2zt
:Z'r (Z)

Let us now consider Conditions (20) and (21) in
Proposition 7. Using the matrix Zv(z) derived from the
expression of AW (z), we derive a right factorization
Ni(2)V; 1 (2) of Zy(2)Tpv(2) with Ni(z) and Vi(z)
polynomial matrices. Using the first technical result
presented in the beginning of this subsection, we subse-
quently derive the following factorization of Ny(z):

Ni(z) = AN, 2N, (2) (24)
If R,, # 0, we then consider a similar right factorization
No(2)Vy (2) of Zy(2)Xor, (2)F(2) and we apply the
first technical result on the polynomial matrix Nao(z):

Na(2) = AN, 2N, (2) (25)
Finally, if R, # (), we apply the second technical result

(presented in the beginning of this subsection) on the
multisine vector Zy(z)d(t):

Zy(2)d(t) = By 6(t) (26)

Using (22) and (24), Condition (20) can be equiva-
lently rewritten as 67 Ay, Zn, (2) = 0 = 67 Zy(2) =0
which, due to the characteristic of Zy, (z) and Zy(z), is
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also equivalent to [6,5]:

T AN, =0=6=0 (27)

Using (22), (24), (25) and (26), Condition (21) can be

equivalently rewritten as
5T.AN1ZN1 (Z) =0
(5T.AN2ZN2 (Z) =0
E (67 B; (8)* =0

— 61 Zy(2) =0 (28)

which, due to the characteristic of Zy(2), Zn, (2), Zn, (%)
and ¢(t), is also equivalent to [6,5]:

T AN, =0
TAN, =0 = 0=0 (29)
' B;=0

To sum up, if we define A5 = {6 | Q7 (2) (67 Zx(2)) €
A}, we can reformulate Proposition 7 as follows.
When 7(t) = 0, Z(t) is informative wrt. M if and only
if (27) holds for all § € As. When 7(t) # 0, Z(t) is
informative wrt. M if and only if (29) holds for all
6 € Ag. This leads to the following proposition that
allows one to verify if data informativity is obtained in
a certain situation (i.e., a given network configuration,
a given M, a given V and given 7 _(t) and 7, (t)).

Proposition 9 Consider the framework of Proposi-
tion 7. Then, in the case where 7(t) = 0, we can con-
struct the matriz Ay, as indicated above this proposition
and we can verify whether the data Z(t) are informative
wrt. M by checking that the matriz Ay, is a full row
rank matriz. In the case where #(t) # 0, besides Ay, , we
also construct, as indicated above this proposition, the
matrices An, (if Rn # 0) and Bg (if Rs # 0) and we
can verify that the data Z(t) are informative wrt. M by
checking that the matriz C is a full row rank matrixz. The
matriz C = (An, An, Bg) if both R, # 0 and Ry # 0
while C = (An, An,) if Rs = 0 and C = (An, By) if
R, =10. ]

Proof. This proposition is a straightforward conse-
quence of the paragraph preceding the proposition?. m

Note that the number of columns in By is related to
the number of entries in 7z, and, more particularly, to

3 The conditions in Proposition 9 are (generally) only suffi-
cient conditions for (27) and (29) to hold since A; is (gener-
ally) not equal to the whole vectorial space [5]. However, the
introduced conservatism is generally much lower than with
the sufficient conditions of Section 4 as will be shown in the
examples of Section 5.3 and 5.4 [5].



the number of sinusoids at different frequencies in 7z,
while the number of columns in Ay, is related to the
complexity of F'(z) and to how large n, is in (16). Con-
sequently, if we face a situation where we do not have
data informativity, we can easily determine what mea-
sures have to be taken in order to increase the informa-
tivity of the data (see Section 8 of [5] for more details).

Since the data informativity condition of Proposi-
tion 7 is a function of the unknown matrix Go(z), the
same can be said for the matrices Ay, and C in Propo-
sition 9. As mentioned in the previous section, we can
nevertheless check the data informativity in a generic
manner by replacing Go(z) by any full-order model of
this matrix. The models of the entries of Go(z) do not
need to be accurate, but they should be of the correct
order. Consequently, to verify the data informativity
using Proposition 9, we need to know the orders of all
the entries of G(z) and not only the entries in its jt"
row (see Assumption 2).

If we cannot assume that ¥y, > 0, we can use
Proposition 8 instead of Proposition 7 (see Section 5.1).
Proposition 9 remains valid in this case if we define
Ap, based on a right factorization Ny(2)V;'(2) of
Zy (2)Tov(2z)Hov,v(2)E0,v. As proposed in the remark
at the end of Section 5.1, if a model of ¢y is not
available, we can neglect the contribution of the process
noises to data informativity and define C uniquely based
on Ay, (if R, # 0) and B (if Rs # 0).

Let us now give two illustrations of the advantages of
the results in this section with respect to the results in
Section 4.

5.8  First illustration

We consider the same network as in Section 4.3 i.e.,
a network with Go(z) given by (15) and whose graph is
given in Figure 1. However, let us now define more pre-
cisely the non-zero transfer functions in Go(z). We have

Gos1(2) = 245 and G sa(2) = 2295, Go1a(2) =

0.3 Go 32(2) (Ao(2) = 1-0.741271). Moreover, let us also
assume that o(t) = diag(Ay'(2), Ay ' (2), Ay (2))é(t)
with &(¢) a white noise vector of covariance matrix Xy =
diag(0,0,0.1). Since V = {3}, we have that £, = 0.1 >
0 and we are thus in the framework of Proposition 7.

Like in Section 4.3, we take j = 3 and K = 0 i.e.,
we want to identify consistently the transfer functions
G0731(2)7 Go,gg(z) and H370(Z) (D = {1, 2})

Let us first verify whether the sole excitation of vs(t)
could lead to data informativity (enabling costless iden-
tification). For this purpose, we must construct the ma-
trix Ay, and verify whether it is full row rank.

We observe that the model structure M taken as ex-
ample in Section 5.2 is a full-order model structure M for
the to-be-identified transfer functions G 31(2), Go,32(2)
and Hs o(z). For this model structure M, we have thus
that Zy(z) is the one defined in (23).

Since K = 0, we have, using (19), that Toy(z) =
(S0.33(2), So.13(2), So.23(2))7 i.e. a permutation of the
third column of Sp(z). The matrix Zy (2)Tp y(2) can be
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factorized as Ny (2)V;"'(2) with:

271 —1.482 272 4+ 0.5488 773
0.0778 272 — 0.0576 273
0

Nl(z) =

and V;(z) = 1—1.482 271 +0.5354 2 2. The polynomial
matrix N1 (z) can be factorized as:

1 —1.482 0.5488 2zt
Ni(z) = AN, Zn,(2) = | 0 0.0778 —0.0576 272
0 0 0 273
=An,
(30)

Since the matrix Ay, is not full row rank, we cannot
infer data informativity with the sole excitation of v3(t)
(see Proposition 9). This is an expected result since wa (1)
is equal to zero when r4(t) = va(t) = 0, and it will
therefore be impossible to identify G s2(2). It makes
thus sense to improve the data informativity by adding
an external excitation o to Node 2.

Let us try this with a very simple excitation sig-
nal ro(t) i.e., r2(t) = cos(wot) with an arbitrary fre-
quency wy, say wg = 0.1. This means that R = Ry =
{2}. In order to verify whether we have data informa-
tivity with this excitation pattern, we need to construct
the matrix B; using the multisine vector Zy(z)d(t).
For this purpose, we observe that d(t) = T (2} (2) r2(t)
(Ms = 01in (17) since rj—3(t) = 0) and that, using (19),
T(),{Q}(Z) = (S()_’32(Z), 50’12(2), S()yQQ(Z))T. USiI’lg the
fact that Zv(e70)Tj (23 (e7?) = (0.88 — 0.62 j, 0.17 —
0.26 7, 0.995 — 0.099 j )T for wy = 0.1, we obtain the
following factorization (26) of Zv(2)d(t)

0.88 — 0.625 0.88 +0.625 .
- 0.5 e7*o?
Zr(z)d(t) = 0.17 — 0.265 0.17 4+ 0.265 0.5 o—dwot
De
0.995 — 0.099;5 0.995 + 0.0997
=B,{

Since R,, = 0, the matrix C in Proposition 9 is given by
C = (An, Bj). Since the rank of this matrix C is equal
to three, C is full row rank and we can thus conclude that
we will get a consistent estimate of G 31(2), Go32(%)
and Hsj o(z) using an excitation ro(t) = cos(0.1t) and the
noise disturbance v3(t). The data informativity property
can be confirmed by performing an identification with a
large N in these conditions (i.e. #(t) = (0, cos(0.1t),0)T
and V = {3}) and by observing that 6 is indeed a very
close estimate of 0. It is also clear that, due to the above
result, data informativity will also be obtained if ro is
made up of more than one sinusoid and if r; and r3 are
also multisines (at other frequencies than the sinusoids
in r2). This indeed only add more columns to Bj. Using



the procedure of Section 5.2, we can also prove that we
have data informativity when r; is filtered white noise.

The above results show the important advantage of
Proposition 9 upon the conservative results of Section 4.
Indeed, as shown in Section 4.3, with these conserva-
tive results, we could only prove data informativity if
the cardinality of R is larger or equal to two and if the
excitations are filtered white noises. -

In the analysis above, we have used the true Go(z) to
deduce C. We have nevertheless also applied the above
procedure for different full-order models of G (z) and the
rank of the matrix C remained equal to three for all these
models. The tested models have all the following form

b bizz™!
G31(Z) = 1-::-1112_1’ G32( ) = 1+az—17 Gl3( ) = 1_}_:;2—1
with a parameter vector (bsy,bsg, bis,a)” € R* gener-

ated randomly.
5.4 Second illustration
Let us consider a network (1) with N,,,q = 3 nodes

where G(z) is given by:

0 0 0.5z71
0527 0 0.5z71!
05271 05z7F 0

(31)

and where Hy(z) = I3 and Xy = diag(0,0.1,0). Since
V = {2}, we have that ¥y = 0.1 > 0 and we are thus
here also in the framework of Proposition 7. The graph of
this network is given in Figure 4. We here wish to identify
Row 2 of Gy(2) (i-e., j = 2) and we suppose here also that
there is no known element in the second row of Ggy(z)
(K = (). This means that the identification procedure
of Section 3 pertains to the consistent identification of
G0721(Z) and G0723(2’) (since H()J' = 1) We have thus
D = {1, 3}. Observe also that Assumption 3 is respected
in this setup.

E \

Fig. 4. Graph representation of (31).

For this network, we will prove, via Proposition 9, that
a consistent estimate of the transfer functions G 21(2),
Go,23(2) can be obtained via the (costless) excitation of
the noise va(t) = ez2(t). As said in Proposition 9, we
must thus construct the matrix Ay, and verify whether
it is full row rank. For this purpose, following the pro-
cedure in Section 5.2, we first factorize AW (z). Us-
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ing (31), amodel structure M satisfying Assumption 2 is

M= {G’Q,D(Z,e) = (912_1 922_1) , HQ(Z,G) = 1} (9 =
(61,02)T). Using (11), the left factorization Q~1(2)Y(z)
of AW (2) is Q(z) =1 and Y(z) = (0, 661271, 662271)

(With (591 = 91,0 — 91 and 592 = 92’0 — 92) Deﬁning
§ = (6601, §02)T, we can write Y(2) = 67 Zy(2) with

0z7' 0
ZT(Z)Z(O 0 z‘l>

Since we are here in the conditions of Proposition
7, the matrix Ax, will be based on a right factoriza-
tion of Zy(2)Tp,v(2). The matrix Tp (%) is here equal
to (S0.22(2), So.12(2), S0.32(2))T i.e., a permutation of
the second column of Sy(z). The matrix Zy(2)Tp v (2)
can be here factorized as Ny(2)V; *(z) with: Ny(2) =

T
(02527 05:72) andVi(2) = 1-0.522—0.1252 7"

The polynomial matrix N1(z) can subsequently be fac-
torized as:

42
Ni(z) = AN, ZnN, (2) = <005 0.§5> (z_3>

—_——
=An,

Since Ay, is full row rank, we have thus data informa-
tivity under the sole excitation of the unknown process
noise vy (t). The data informativity property is confirmed
by performing an identification with a large IV in these
conditions (i.e. 7#(t) = 0 and V = {2}) and by observ-
ing that O is indeed a very close estimate of 6. We can
thus prove the data informativity using Proposition 9
while it is not possible to do so using Proposition 4 since
V\{j} = 0. This confirms the usefulness of Proposition 9
to check data informativity. -

In the analysis above, we have used the true Go(z) to
deduce Ay, . We have nevertheless also applied the above
procedure for different full-order models of Gy(z) and
the rank of the matrix Ay, remained equal to two for all
these models. The tested models have all the topology
of the network in Figure 4 and the five non-zero transfer
functions have all the form G;(2) = byz~! with a pa-
rameter vector (b13,ba1,bas, ba1,b32)? € R’ generated
randomly.

6 Optimal experiment design
6.1 Results

Using the data informativity conditions of Propo-
sition 9, we can show that consistent estimates of
(Gojp(2),Ho,j(#)) can be obtained for different sets
R and different types of excitation vectors 7 (t) (i.e.,
7r,(t) and 7x, (t)). This defines different identification
options. Since consistency is an asymptotic property,
these results do not say anything about the accuracy
of the identified parameter vector 0y (which defines



the model of (G p(2), Ho ;(2))) under these different
options. In this section, we will analyze the accuracy

of Oy and determine the signal vector 7z (t) leading to
the desired accuracy for 6 with the smallest excitation
power.

Since A is a consistent estimate of 6 and €;(t,6p) =
e;j(t), the estimate Oy is also (asymptotically) nor-
mally distributed around 0y with a covariance matrix

0'2 — —
Py that is given by Py = o (Ev;(t,00)¢7 (t,00)) "

with ;(t,0) = %;’0). When we are more particularly
interested in a subvector pg of 8y, we use the fact that
the subvector py can always be written as pg = S 0y for
some matrix S and we define P, as the covariance ma-

trix of S f. We have then P, = SPyST. Since Py = P,
when S is chosen as S = I, (ng denotes the dimen-
sion of 6), let us for the sake of generality continue our
analysis for P, = SPyS T,

We want to determine the excitation vector 7z (t) that,
for an identification experiment of duration N, yields
an acceptable covariance matrix P, = SPyST with the
least excitation power. For this purpose, we will first as-
sume that ng = Npoq 1.6, R = {1,2,..., Npoa} and
we will determine the power spectrum matrix ®; of the
excitation vector 7(¢) having the smallest power while

guaranteeing that the estimate 65 obtained via an iden-
tification experiment of duration N with this excitation
has a covariance covariance matrix Py that satisfies the
following constraint SPyST < Rgam where Rqqm Spec-
ifies the desired accuracy (a diagonal Ry, e.g., allows
to constrain the standard deviations of each entries of
S Oxn [11]). We thus require Rqgn, — SPpST > 0 and, us-
ing Schur complement, this gives the following optlmal
experiment design problem:
D (w) dw)

£5s
K

Radm S

sT P,
This optimization problem is convex since, as will
be shown in the sequel, P, 1is an affine function of
®7(w). As indicated above, in this optimal experiment
design problem, the main objective is to determine
the least powerful excitation vector 7(¢) such that
SPyST < Ruim. Note nevertheless that the objective
function of the optimization problem (32) has a /;-norm
structure. Since it is frequently observed that such
objective functions, when minimized under convex con-
straints, generate a sparse solution (see e.g., [16]), we
can expect that the optimal excitation vector 7(t) will
have some elements r; equal to zero. In other words, the
set Rope corresponding to the solution of (32) will gener-
ally have a cardinality ng,,, that is smaller than Ny,0q

(defining in this way the optimal excitation pattern).

Let us now derive the affine relation between ®(w)
and P, ! Using the philosophy introduced in [10,3], we

min trace
Pr(w)

subject to < (32)
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have that: 1;(¢,00) = T'1(z,60) wp(t) + a(z,00) €;(t)
where I'1(z,0) is a matrix of dimension ny x np whose
I row is given by Hf;(z)dc%gl(z’e) (6, is the I*" entry
of # € R™) and I'y(z,0) is a vector of dimension ng
whose [*" entry is given by H(;jl (2) dHégj’e). Using now
the fact that, for any set R, wp(t) = So,pr(2)Tr(t) +
Sopv(z)Ho v v(z)ey(t), we can rewrite the previ-
ous equation as follows: 9;(t,6p) = T'z(z,00)Tr(t) +
Fé(Z,ao)év(t) with FF(Z 90) = Fl(Z 90)50@7{( ) and
withTz(z,600) = Ta(z,600) m] +T1(2,60)S0.p,v(2)Hov ()
where the column vector m; of dimension ny is a unit
vector such that m] éy(t) = e;(t). As mentioned above,

we here choose R = {1,2, ..., Npoq} for the experiment

design and we have thus 7z (t) = 7(¢). Consequently,

Pt = % (Ev;(t,00)1] (,600)) = Re(Pr(w),b0) + Re(fo)
Ry (@7 (w ) fo) ? P fﬂ (e7,600) ®r(w) TE(e?*,600) dw
(90 % 5= j ) 20\) F*(ejw 90) dw

with ¥ the covariance matrix of &y ().

Since @7(w) is a variable of infinite dimension, we need
to choose a linear parametrization for ®;(w) to solve the
convex optimization problem (32) [13,4,1]. We can e.g.,
choose the parametrization given in [1] and that corre-
sponds to filtered white noise 7(t). However, in order to
simplify this complex optimization problem, we will here
restrict attention to a parametrization corresponding
to an excitation vector 7(t) made up of mutually inde-
pendent white noises: ®-(w) = diag(cy, ca, ..., N,,,,) Yw
where ¢ (k =1, .., Nyjog) is the to-be-determined vari-
ance of 7.

Remark. Like in all optimal experiment design prob-
lems, Py depends on the unknown 6, (i.e. the true param-
eter vector describing Hy j(z) and G jp(z)) and also
on the unknown matrices Sy(z) and Hy(z). Initial esti-
mates of these unknown quantities are thus necessary to
solve the optimization problem (32). [ |

6.2 Numerical illustration

Let us consider the same network as in Section 5.4
where we wish to identify Go21(z) and Go23(2) (ie.
j = 2). For that network, as proposed above, we will
solve (32) using ®r(w) = diag(cy, o, c3) Yw where ¢
(k =1, .., 3)is to-be-determined variance of r. As shown
in Section 5.4, the model structure M considered for this
identification is M = {G2p(z,0)} with G3p(z,0) =
(01271, B2271) (0 = (01,02)T). Let us first suppose that
we are interested in having an accurate estimate ON of
the whole true parameter vector 6y = (0.5,0.5)7. This
means that we choose S = I5. Let us also define R,4,, as
Raam = 107°I5. In Section 5.4, we have proven that we
have data informativity when 7(¢) = 0. Consequently,



if we choose N sufficiently large, the optimal spectrum
®P" (w) will be equal to zero (Rop; = 0). This is possi-
ble because the matrix Rz(6p) is strictly positive definite
and proportional to N. However, for N = 1000, we ob-
tain @27 (w) = diag(8.54,0,5.82) which corresponds to
an excitation signal on Node 1 and on Node 3. In other
words, Rop = D = {1, 3}.

Let us now suppose that it is impossible to add an
excitation signal on Node 1. We can then solve the op-
timization problem (32) imposing ¢; = 0. We then ob-
tain @27 (w) = diag(0,0,29.35) which corresponds to a
unique excitation signal on Node 3. However, we observe
that, when we cannot excite Node 1, much more power
has to be injected in the network to obtain the desired
accuracy. Let us constrain (32) even more by supposing
that we can only add an excitation on Node 2 (not on
Nodes 1 and 3). We thus impose ¢; = ¢3 = 01in (32) and
we obtain ®27* (w) = diag(0,117.41,0) where we see that
the excitation power (which is now on the only excitable
node) is even larger.

Let us now come back to the case where we can add an
excitation on each node, but let us now suppose that we
are only interested in an accurate estimate of the trans-
fer function Gg 21(z). We therefore choose S = (1 0)
and Rgg,, = 1075, The optimal solution of (32) is then
O (w) = diag(9.36,0,0) which corresponds to a unique
excitation signal on Node 1 (i.e., the input signal w (¢)
of Go,21(2)). If we are only interested in an accurate es-
timate of the transfer function Gg 23(2) (S = (0 1)), we
observe the same phenomenon since the optimal spec-
trum is given by ®2(w) = diag(0,0,7.28).

7 Conclusions

In this paper, we have addressed the data informativ-
ity problem for the identification of a row of Go(z) us-
ing the full input approach. We have derived conditions
that ensure data informativity for the identification of
modules having an arbitrary complexity and that can
be checked by inspecting the topology of the network.
We have also developed a necessary and sufficient con-
dition for data informativity that takes into account the
complexity of the to-be-identified modules. This partic-
ular data informativity condition is verified if a matrix
of coefficients is full row rank. The determination of this
matrix of coefficients requires a full-order model of the
network matrix Go(z). Consequently, the verification of
the necessary and sufficient data informativity condition
requires more information on the network than the more
conservative conditions (that can be verified by inspect-
ing the network topology).
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A Proof of Proposition 4

Using (6), we can rewrite Z(t) = (y;, wh(t))T as:

1 Go; (t
.f(t) _ OvJ»D(z) U]( ) (Al)
0 InD 'LD’D(t)
=J(z) =Zpis ()



As also shown in [8], since J(e/¥) is a full-rank square
matrix at all w, we have that (14) is equivalent to

®z,..(w) > 0 at almost all w. (A.2)

In the sequel of the proof, we will show that (A.2) holds
under the conditions of Proposition 4. For this purpose,
let us observe that, when 7(¢) = 0, we have that wp(t) =
So,p,v(2)0y(t), which can also be rewritten as: wp(t) =
So,p,j(2) vj(t) + Sopu(z) vu(t) with U = V\{j}. The
vector Tp;s(t) can thus be rewritten as:

=g o)
" Som5(2) Somul2) ) \wui(t)

=J(z)

Observing that £(t) = (vj(t), v} (¢))T is just a permuta-
tion of vy, (t) = Ho,y,v(2)ey(t) and recalling that Propo-
sition 4 assumes that oy > 0, it is clear that ®g(w) > 0

t (almost) all w. The latter and the fact that, when
Condition (i) holds, the matrix J(e/*) in (A.4) is full
row rank at almost all w show that (A.2) is indeed sat-
isfied under the conditions in Proposition 4; concluding
the proof.

B Proof of Proposition 5

In the proof of Proposition 4, we have shown that (14)
is equivalent to (A.2). In the sequel, we will show that
Tpis(t) = (v;(t), wp(t))T satisfies (A.2) under the con-
ditions of Proposition 5. For this purpose, let us observe
that ’lI)D(t) = So)pjg(z)fn(t) + SO,D,V<Z)T}V<t) can here
be rewritten as: wp(t) = So.p ;(2) vj(t) +So.p,0(2) p(t)
where @ = RU (V\{j}) and where p(¢) is a vector of di-
mension ng whose elements are equal to vy, (if k € V\{j}
and k ¢ R), to v + i, (if k € V\{j} and k € R) or
tor, (if & ¢ V\{j} and k € R). The vector Zp;s(t) =
(v;(t), wp(t))T can thus be rewritten as:

G 1 0 v;(t)
Tois(t) = | 5 . B.1
b (t) <SO,D,j<Z) S(),D,Q(Z) ) ( p(t) > ( )

———
=R (t)

=L(z)

Observing that the noise v; does not appear in p(t) and
recalling that Proposition 5 assumes that ¥y, > 0, that
Condition (ii) holds and that 7(¢) and é(t) are uncorre-
lated (see Assumption 1), it is clear that ®z(w) > 0 at
(almost) all w. The latter and the fact that, when Condi-
tion (i) holds, the matrix L(e’“) in (B.2) is full row rank
at almost all w show that (A.2) is indeed satisfied under
the conditions in Proposition 5; concluding the proof.

C Proof of Proposition 6

In the proof of Proposition 4, we have shown that (14)
is equivalent to (A.2). In the sequel, we will show that
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Tpis(t) = (v;(t), wp(t))T satisfies (A.2) under the condi-
tions of Proposition 6. For this purpose, using wp(t) =
SO,’D,R(Z)FR(t) + SO,’DJ}(Z)@V(t)’ we have

7 v;(t)
Tois\t) = | & . C.1
i) (S&D,R(Z)Tn(t) + So,p,v(2)0p(t) ) (€1

Under Conditions (i) and (ii) of Proposition 6, we have
that the vector ((t) = Sopr(2)Tr(t) has a strictly
positive-definite power spectrum matrix ®#(w) at almost
all frequencies. Since ((t) is also uncorrelated with v;(t)
(Assumption 1), it is thus clear that (A.2) is indeed sat-
isfied under the conditions in Proposition 6; concluding
the proof.

D Proof of Proposition 7

We will first prove the result for the case 7(t) # 0. Let
us consider Definition 1 for this purpose. Using (17), we
canrewrite AW (z)Z(¢) (see Definition 1) in the following
way:

AW (2)2(t) = 5e(t) + 54(t) + 5a(t) (D.1)
Se(t) ZAW( ) Tov(2) Howyv(2) év(t) (D.2)
54(t) = AW (2) Xor, (2) F(2) 4(t) (D-3)
Sa(t) = AW (2) d(t) (D-4)

Since Assumption 1 states that &(¢) is independent of
7(t) (and thus of g(t) and d(t)) and since () is also inde-
pendent of d(t) , the left hand-side of (13) is equivalent
to:

E3%(t)=0
Es2(t) =0 (D.5)
Es2(t) =0

When ¥y y > 0, we have that the power spectrum matrix
D, (w) of vy(t) = Hoyv(z)ep(t) is strictly positive-
definite at almost all w. Using this property, we see that
E32(t) = 0 (see (D.2)) is equivalent to AW (2) Tp y(2) =
0. Using the fact that ®4(w) = I,,, > 0, we see also that
Es2(t) = 0 (see (D.3)) is equivalent to the second equa-
tion of the left hand side of (21). Finally, E523(t) = 0
(see (D.4)) is equivalent to the third equation of the
left hand side of (21). Combining these facts, we con-
clude that the left hand side of (13) is equivalent to
the left hand side of (21). Consequently, using Defini-
tion 1, (21) is indeed a necessary and sufficient data
1nf0rmat1v1ty condition. The last statement of Propo-
sition 7 can be proven as follows. When F' (69“’) is full
row rank at almost all w, the vector g, (¢) in (16) has
the property that @z (w) > 0 at almost all w. This in
turn means that £52(t) = 0 is in this case equivalent to
AW (z) Xo g, (2) =0.

Let us now turn our attention to the costless case. For
this purpose, let us observe that, when 7(¢t) = 0, (D.1)
becomes AW (2)Z(t) = 5.(t). Consequently, the left



hand side of (13) is equivalent to £52(t) = 0 and thus
to the left hand side of (20) (as shown above). It is
thus clear that (20) is the necessary and sufficient data
informativity condition in the costless case.

E Proof of Proposition 8

Let us denote by p the rank of ¥y (p < ny). Since
Yoy = BovE]y with Zgp € R™*P, we can rewrite
éy(t) as éy(t) = g,y Eunit(t) where the power spectrum
matrix @z, ., (w) of €yuni(t) is equal to the identity ma-
trix I, > 0 at all w. Consequently, (D.2) can be rewritten
as

5c(t) = AW (2) Tov(2) Hovy(2) Zo,v Cunit(t) (BE.1)

Since ®z,,,,(w) = I, > 0, E52(t) = 0 is equivalent to
AW (z) Tov(z) Ho v v(z) Eo,y = 0. Similar arguments
as in the proof of Proposition 7 then leads to the desired
result.
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