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Abstract— Identification of output error models from fre-
quency domain data generally results in a non-convex op-
timization problem. A well-known method to approach the
output error minimum by iterative linear regression steps was
formulated by Sanathanan and Koerner. A disadvantage of
this approach is that in general convergence of the iterations
only implies optimality under restrictive conditions. In the
literature, an alternative iterative linear regression procedure
is available, which ensures optimality upon convergence, also
in case of undermodeling. This algorithm is known for time-
domain identification as the Simplified Refined Instrumental
Variable method (SRIV), and was recently formulated for
frequency domain identification of SISO output error models.
Here we generalize this formulation to MIMO identification of
models in matrix fraction description. The effectiveness of the
approach is demonstrated by its application to estimation of a
parametric model of the multivariable dynamics of a spindle
with Active Magnetic Bearings.

I. INTRODUCTION

Identification of multivariable parametric models from fre-
quency response function (FRF) data is applied in numerous
application areas. Frequently, the emphasis is on identifica-
tion of a parametric model of the plant dynamics. When the
objective is to find a model in a fractional representation with
a parametrized numerator that minimizes a quadratic output
error (OE) criterion, in general a nonconvex optimization
problem is obtained. Gradient-based optimization can be
employed to solve such problems, however the computational
complexity has stimulated many authors to look for simpler
alternatives.

One approach is to replace the nonconvex optimization by
a sequence of linear regression steps. A classical method to
achieve this when estimating SISO models from FRF data
is due to Sanathanan and Koerner [1]. This method forms
the basis for several MIMO identification methods. These
MIMO methods differ in the model structure that is used
to parametrize the multivariable system and the ability to
incorporate frequency dependent weighting to improve the
estimate. In the approach by Bayard [2] a model repre-
sentation with a matrix numerator polynomial and a scalar
denominator polynomial is used. Here particular attention
is given to the computational aspects given the sparsity of
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the resulting linear regression steps. While in the approach
by Bayard only scalar frequency weighting can be applied,
the approach by Verboven et al. [3] further extends and
improves the method of Bayard for multivariable frequency
dependent weighting, with applications in modal analysis.
The approach by de Callafon et al. [4] uses a more flexible
model representation by definition of model sets in left and
right polynomial matrix fraction description (MFD). Multi-
variable frequency dependent weighting can be incorporated,
where solutions for both input/output weighting and element-
wise weighting are formulated. Also Gaikwad and Rivera [5]
give an extension of the approach by Bayard for models in
MFD and specifically utilize the possibility to perform pre
and post weighting to identify a control-relevant model. Also
non-iterative methods exist that estimate state-space models
from FRF data using subspace algorithms [6], although these
algorithms do not guarantee a cost criterion is minimized.

An important and well-known limitation of the algorithm
proposed by Sanathanan and Koerner is that in general
convergence of the iterations does not imply that the re-
sulting parameter estimate minimizes the OE cost criterion,
inevitably leading to a bias in the estimated model.

In the literature, an alternative iterative linear regression
procedure is available, that is based on an Instrumental
Variable (IV) approach. This algorithm is known for time-
domain identification of OE models as the Simplified Refined
Instrumental Variable method (SRIV) [7], [8], and was
recently formulated for frequency domain identification of
SISO OE models [9]. This method has the property that upon
convergence of the iterations a stationary point of the cost
function is reached, also in the case the system is not in
the model set. In this paper, we generalize this formulation
to MIMO identification of discrete-time and continuous-
time models in matrix fraction description. Iterative linear
regression algorithms are derived for the case pre and post,
or element-wise multivariable frequency weighting of the OE
is applied.

After introducing the identification setting in section II
and discussing the model sets in section III, we give the
linear regression algorithms for identification of OE models
in matrix fraction description (section IV). The algorithms
have been applied for identification of the dynamics of an
Active Magnetic Bearing spindle, of which the results are
discussed in section V.

II. IDENTIFICATION SETTING

The central objective in this paper is to find an LTI
model P of a multivariable system with m inputs and p
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outputs using measured data. For this, the set of N noisy
multivariable frequency response function observations G is
available, which is defined as

G := {G(ωk)|G(ωk) ∈ Cp×m, k = 1 . . . N}. (1)

Here the model P is parametrized by either a left or right
polynomial MFD depending on the real valued parameter
vector θ. Further details on the parametrization are discussed
in the next section. To describe the discrepancy between the
data G and the model P (θ), we use the output error

E(ωk, θ) = G(ωk)− P (ξ(ωk), θ). (2)

Here ξ(ωk) is used to denote the frequency dependency of P ,
where ξ(ωk) = iωk or ξ(ωk) = eiωk when P represents a
continuous-time or discrete-time system respectively. With
this, the aim is to solve the identification problem θ̂ =
arg minθ V (θ) with cost function

V (θ) =
N∑
k=1

‖E(ωk, θ)‖2F . (3)

Application of frequency dependent weighting of the OE
can be used to obtain estimates with lower variance when
the frequency response data have varying covariance, or
to estimate control-relevant models. Cost functions with
weighted errors can be obtained by substituting for E(ωk, θ)
in (3) either the input/output weighted OE

Ei/o(ωk, θ) = Wo(ωk)[G(ωk)− P (ξ(ωk), θ)]Wi(ωk), (4)

with Wo(ωk) ∈ Rp×p and Wi(ωk) ∈ Rm×m, or the Schur-
weighted OE

Es(ωk, θ) = Ws(ωk). ∗ [G(ωk)− P (ξ(ωk), θ)], (5)

with Ws(ωk) ∈ Rp×m, and where .∗ is used to denote the
Schur matrix product (i.e. element-wise multiplication).

III. MODEL STRUCTURE

A. Definition of the model set
The MIMO model is represented in a left or right matrix

fraction description:

P (ξ, θ) = B(ξ, θ)A−1(ξ, θ) (R-MFD)

P (ξ, θ) = A−1(ξ, θ)B(ξ, θ) (L-MFD)

with B(ξ, θ) = Bnb
ξnb + Bnb−1ξ

nb−1 + · · · + B0 and
A(ξ, θ) = ξna +Ana−1ξ

na−1 + · · ·+A0, where Bi ∈ Rp×m,
i = 0 . . . nb and Ai ∈ Rm×m (for models in R-MFD), or
Ai ∈ Rp×p (for models in L-MFD), for i = 0 . . . na − 1.
The parameter vector θ is constructed by accumulating all
elements of the matrices Ai, i = 0 . . . na − 1 and Bi, i =
0 . . . nb. As will become clear in the sequel, it is convenient
to choose an ordering of these elements that depends on
the choice for a left or right matrix fraction description of
the model set. To avoid unnecessary notational complexity,
it is assumed here that the order of the polynomials of all
elements of A are na and those of B are all nb. However, the
approach presented in this paper is equally suited for model
sets where the matrix fractions have elements with varying
polynomial orders. We will return to this in section IV-F.

IV. AN IV-BASED ITERATIVE METHOD TO SOLVE A
MULTIVARIABLE OE IDENTIFICATION PROBLEM

A. A criterion for optimality
The identification problem that was posed in section II,

results in a nonconvex optimization problem. In this section
we give an iterative linear regression algorithm to solve this
optimization problem for both selected model sets, having
the property that convergence implies (local) optimality. This
algorithm is a MIMO extension of the frequency domain
formulation of the SRIV method as given by Van den Hof
and Douma in [9]. We first give the result for the unweighted
OE cost function. In section IV-D we will extend this for the
weighted OE cost functions.

Similar as with the SRIV method, the starting notion is
that for all θ̂ that locally minimize V (θ), ∂

∂θV (θ)
∣∣
θ=θ̂

= 0.
From the definition of V (θ) in (3), it follows that

∂

∂θ
V (θ) =

∂

∂θ

N∑
k=1

vec [E(ωk, θ)]
H vec [E(ωk, θ)]

=
N∑
k=1

−2Re
{

vec [E(ωk, θ)]
H
Mk(θ)

}
where (·)H denotes the complex conjugate transpose,
vec(·) the vectorization operator, and Mk(θ) =
∂
∂θvec[P (ξ(ωk), θ)]. Hence, for all θ̂ for which ∂

∂θV (θ̂) = 0,
the following equality holds:

N∑
k=1

Re
{
MH
k (θ̂)vec[E(ωk, θ̂)]

}
= 0. (6)

B. Iterative procedure for models in L-MFD
In this section we will use (6) to arrive at an iterative

linear regression algorithm to estimate θ̂ for models in L-
MFD. For that, we will rewrite (6) in a regression format.
Let us therefore introduce the notation

Θ =
[
Ana−1 . . . A0 Bnb

. . . B0

]
θ = vec(Θ). (7)

We give the following two propositions:
Proposition 4.1: With E(ξ(ωk), θ) as defined in (2),

where the model is represented in L-MFD, and with θ as
defined in (7), the following identity holds

vec [E(ωk, θ)] = Yk(θ)−Xk(θ)θ (8)

with

Yk(θ) =
[
I ⊗A−1(ξ(ωk), θ)

]
vec[ξ(ωk)naG(ωk)]

Xk(θ) =
[
ΩT (ωk)⊗A−1(ξ(ωk), θ)

]
where ⊗ is the Kronecker product, and

Ω(ωk) =



−ξ(ωk)na−1G(ωk)
...

−ξ(ωk)0G(ωk)
ξ(ωk)nbIm×m

...
ξ(ωk)0Im×m


.
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Proof: For the given model parametrization, and using
the given definition of Ω(ωk), observe that we can express
E(ξ(ωk), θ) as

E(ξ(ωk), θ) = G(ωk)−A−1(ξ(ωk), θ)B(ξ(ωk), θ)

= A−1(ξ(ωk), θ) [A(ξ(ωk), θ)G(ωk)−B(ξ(ωk), θ)]

= A−1(ξ(ωk), θ) [ξ(ωk)naG(ωk)−ΘΩ(ωk)] .

To proceed, we need the following two identities:

vec(AB) = (I ⊗A)vec(B) = (BT ⊗ I)vec(A) (9a)
(A⊗B)(C ⊗D) = AB ⊗DB. (9b)

Using (9a) we can write

vec [E(ωk, θ)] =
[
I ⊗A−1(ξ(ωk), θ)

]
·

· vec [ξ(ωk)naG(ωk)−ΘΩ(ωk)]

which by applying (9a) and subsequently (9b), we can rewrite
to

vec [E(ωk, θ)] =
[
I ⊗A−1(ξ(ωk), θ)

]
·

·
(
vec[ξ(ωk)naG(ωk)]− (ΩT (ωk)⊗ I)vec(Θ)

)
=
[
I ⊗A−1(ξ(ωk), θ)

]
vec[ξ(ωk)naG(ωk)]+

−
[
ΩT (ωk)⊗A−1(ξ(ωk), θ)

]
θ

which is the claimed result.
Proposition 4.2: For models parametrized in L-MFD,

Mk(θ) = Φk(θ)T ⊗A−1(ξ(ωk), θ) (10)

with

Φk(θ) =



−ξ(ωk)na−1P (ξ(ωk), θ)
...

−ξ(ωk)0P (ξ(ωk), θ)
ξ(ωk)nbIm×m

...
ξ(ωk)0Im×m


.

Proof: See appendix VIII-A.
With the results in equations (8) and (10), we can recast (6)
into

N∑
k=1

Re
{
MH
k (θ̂)(Yk(θ̂)−Xk(θ̂)θ̂)

}
= 0 (11)

or equivalently

N∑
k=1

[
Re{MT

k (θ̂)} Im{MT
k (θ̂)}

]
·

·
([

Re{Yk(θ̂)}
Im{Yk(θ̂)}

]
−
[
Re{Xk(θ̂)}
Im{Xk(θ̂)}

]
θ̂

)
= 0.

With the notation

MT (θ) :=
[
Re{MT

1 (θ)} Im{MT
1 (θ)} . . .

. . . Re{MT
N (θ)} Im{MT

N (θ)}
]

X(θ) :=


Re{X1(θ)}
Im{X1(θ)}

...
Re{XN (θ)}
Im{XN (θ)}

 , Y(θ) :=


Re{Y1(θ)}
Im{Y1(θ)}

...
Re{YN (θ)}
Im{YN (θ)}


it follows that the solution of (6) is characterized by

MT (θ̂)(Y(θ̂)−X(θ̂)θ̂) = 0. (12)

From this, a natural iterative identification algorithm follows:

MT (θ̂j−1)(Y(θ̂j−1)−X(θ̂j−1)θ̂j) = 0 (13)

with solution

θ̂j =
[
MT (θ̂j−1)X(θ̂j−1)

]−1

MT (θ̂j−1)Y(θ̂j−1) (14)

When this algorithm converges, necessarily V ′(θ̂) = 0,
ensuring that θ̂ is a stationary point of the cost function.
Observe that (14) has the structure of an IV estimator. Also,
note that replacing M by X would give the Sanathanan-
Koerner iteration for the given model set.

C. Iterative procedure for models in R-MFD
Analogous to the analysis in the previous section, we will

now use equation (6) to derive an iterative linear regression
algorithm for systems in R-MFD . To that end, we introduce
a different notation for Θ, i.e.

ΘT =
[
ATna−1 . . . AT0 BTnb

. . . BT0
]

θ = vec(Θ). (15)

With this, we give the following two propositions. The proofs
of these are similar to those of the corresponding propositions
for the L-MFD case, and are omited for reasons of space.

Proposition 4.3: With E(ξ(ωk), θ) as defined in (2),
where the model is represented in R-MFD, and with θ as
in defined (15), the following identity holds

vec [E(ωk, θ)] = Yk(θ)−Xk(θ)θ (16)

with

Yk(θ) =
[
A−T (ξ(ωk), θ)⊗ I

]
vec (ξ(ωk)naG(ωk))

Xk(θ) =
[
A−T (ξ(ωk), θ)⊗ Ω(ωk)

]
where

Ω(ωk) =
[
−ξ(ωk)na−1G(ωk) . . . −ξ(ωk)0G(ωk)

ξ(ωk)nbIp×p . . . ξ(ωk)0Ip×p
]
.

Proposition 4.4: For models parametrized in R-MFD,

Mk(θ) = A−T (ξ(ωk), θ)⊗ Φk(θ) (17)

with

Φk(θ) =[
−ξ(ωk)na−1P (ξ(ωk), θ) . . . −ξ(ωk)0P (ξ(ωk), θ)

ξ(ωk)nbIp×p . . . ξ(ωk)0Ip×p
]
.

With (16) and (17), we can rewrite (6) also for models in R-
MFD to (11), albeit with different definitions of the matrices
Yk, Xk and Mk. Hence, by applying these definitions, a
similar iterative algorithm can be followed as the one derived
for systems in L-MFD in the previous section.
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D. Minimization of weighted OE cost criteria

The algorithms in the previous sections were derived for
the cost function based on the unweighted error. Here we
will show how these results can be generalized for the case
input/output weighting or Schur weighting is applied.

1) Input-output weighting: Observe that with the in-
put/output weighted error Ei/o(ωk, θ) as defined in (4),
setting the first derivative of the cost function to zero yields
the equality

N∑
k=1

Re
{
MH
i/o,k(θ)vec [Wo(ωk)E(ωk, θ)Wi(ω)]

}
= 0

(18)

where Mi/o,k(θ) = ∂
∂θvec[Wo(ωk)P (ξ(ωk), θ)Wi(ωk)]. Us-

ing the identity vec(ABC) = (CT ⊗ A)vec(B), we derive
that

vec[Wo(ωk)E(ωk, θ)Wi(ωk)]

= [WT
i (ωk)⊗Wo(ωk)]vec[E(ωk, θ)]

and

Mi/o,k(θ) =
∂

∂θ
[WT

i (ωk)⊗Wo(ωk)]vec[P (ξ(ωk), θ)]

= [WT
i (ωk)⊗Wo(ωk)]Mk(θ).

By substituting these identities in (18), and using the ex-
pressions derived for vec[E(ωk, θ)] and Mk(ωk, θ), iterative
algorithms to minimize the input/output weighted cost can
be obtained in the same fashion as derived above.

2) Schur weighting: Similarly as for input/output weight-
ing, note that with the Schur-weighted error Es(ωk, θ) as
defined in (5), ∂

∂θV (θ) = 0 implies

N∑
k=1

Re
{
MH
s,k(θ)vec [Ws(ωk). ∗ E(ωk, θ)]

}
= 0 (19)

where Ms,k(θ) = ∂
∂θvec[Ws(ωk). ∗ P (ξ(ωk), θ)]. We derive

that

vec[Ws(ωk).∗E(ωk, θ)] = vec[Ws(ωk)].∗vec[E(ωk, θ)]

and

Ms,k(θ) =
∂

∂θ
vec[Ws(ωk)]. ∗ vec[P (ξ(ωk), θ)]

= vec[Ws(ωk)]. ∗Mk(θ).

Again, substitution of these identities in (19), in conjuc-
tion with the derived expressions for vec[E(ωk, θ)] and
Mk(ωk, θ), allows to derive iterative algorithms that mini-
mize the Schur weighted cost upon convergence.

E. Estimation of common denominator models

The algorithm that is described in this paper, ensures that
converging iterations imply an optimal estimate of the param-
eters in a matrix fraction representation is obtained. Here we
will demonstrate that this property can also be obtained for
model representations with a common denominator.

For this, let the model set be defined by P (ξ, θ) =
B(ξ, θ)A−1(ξ, θ), where B(ξ, θ) is as defined before, and
A(ξ, θ) = I · a(ξ, θ) with a(ξ, θ) a scalar polynomial.
Estimation of the parameters in this represention can be
reformulated to estimation of the parameters in a represen-
tation that matches the fully parametrized matrix fraction
representation of section III. For this we will show that
there exists Gv(ωk), Bv(ξ, θ) and Av(ξ, θ), with Bv(ξ, θ)
and Av(ξ, θ) fully parametrized, such that

‖E(ωk, θ)‖2F = ‖Ev(ωk, θ)‖2F (20)

where Ev(ωk, θ) = Gv(ωk) − Bv(ξ(ωk), θ)A−1
v (ξ(ωk), θ).

Indeed note that for models with a common denominator,
we can write

‖E(ωk, θ)‖2F
=
∣∣vec[G(ωk)]− vec[B(ξ(ωk), θ)] · a−1(ξ(ωk), θ)

∣∣2 .
With this it follows that if Gv(ωk) = vec[G(ωk)], Bv(ξ, θ) =
Bv,nb

ξnb +· · ·+Bv,0, where Bv,i ∈ Rp·m×1, i = 0 . . . nb and
Bv,i = vec(Bi), and Av(ξ, θ) = a(ξ, θ), identity (20) will
hold. Once having obtained estimates B̂v,i, we can directly
construct estimates B̂i using the identity Bv,i = vec(Bi).

F. Extension for model sets with non-full parametrization

Until now, it was assumed that polynomial matrices
A(ξ, θ) and B(ξ, θ) are fully parametrized. However, it is
straightforward to deal with model descriptions for non-full
parametrizations. Observe that following the approach in the
previous sections for a non-full parameterization would result
in a parameter vector θ with one or more zero elements.
Deletion of these elements from θ, as well as deletion of
the corresponding columns from the matrices Mk and Xk,
yields the desired result.

V. RESULTS

The algorithm has been applied for estimation of a
parametric model of a micro-milling spindle with Active
Magnetic Bearings (more details on the application and the
setting can be found in e.g. [10], [11]). The radial dynamics
of an AMB spindle constitute a 4× 4 MIMO system, where
the inputs represent the currents through the electromagnetic
coils and the outputs the displacement of the rotor shaft at
the location of the bearings. Here the objective is to find an
accurate model of the resonant behavior of the spindle.

Noisy FRF data at a frequency grid consisting of N =
312 points ranging from 1.2 to 4.4 kHz was available. A
model set in R-MFD with na = 5 and nb = 4 was selected,
resulting in a total number of 128 parameters to be estimated.
Schur weighting was applied, where for Ws(ωk) the inverse
of the estimate of the standard deviation of the FRF was
used. The iterations were initiated by a least squares estimate.
After 7 iterations the algorithm converged, with final cost
of 2.94. For comparison, also a model was estimated using
SK iterations. These converged after 27 iterations, yielding a
final cost of 4.50. We note that during the SK iterations, some
of the intermediate estimates had a lower cost than the final
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estimate (the minimum obtained cost was 4.29). In contrast
to this, the final estimate obtained with the IV-based method
had the least cost. These results confirm that the IV-based
method outperforms the method of Sanathanan and Koerner.

In figure 1 the results with the IV-based method are
depicted. The frequency reponse of the estimated model
shows very high correspondence to the dataset. The dynamics
including the ill-damped resonances are estimated correctly.
Moreover, the applied weighting effectively avoids modeling
errors due to large variance errors in the FRF data. Here such
variance errors are particularly present around the harmonics
of the rotational frequency of the spindle (80, 000 rpm).

VI. CONCLUSIONS

Iterative linear regression algorithms are given for es-
timation of OE models in left or right matrix fraction
description from frequency response data. These algorithms
are extensions of the SISO IV-based linear regression al-
gorithm, which has the property that convergence implies
a stationary point of the cost function is reached. This
property, in combination with the freedom in the definition
of the model set and the possibility to incorporate pre, post
or element-wise multivariable frequency weighting, makes
this an attractive approach for MIMO frequency domain
identification of OE models. It is not claimed that the method
discussed here can outperform gradient-based optimization
methods. However, it appears to be a favorable alternative
for the classically applied SK-iterations. Application of the
approach to estimation of a model of a spindle with Active
Magnetic Bearings demonstrates this.
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VIII. PROOFS

In this appendix we give the proof of proposition 4.2. We
will first give the following lemma.

Lemma 8.1: Suppose A(θ) is a complex square matrix,
depending on the complex vector θ, which takes values in
an open subset V ⊆ Cl. Furthermore, suppose that A(θ) is
invertible and analytical for all θ ∈ V . Then for θ ∈ V

d

dθ
vec[A−1(θ)] = [−A−T (θ)⊗A−1(θ)]

d

dθ
vec[A(θ)].

(21)
Proof: Let θi be the ith element of θ. Using the product

rule for matrix differentation, we derive that

∂

∂θi
(A(θ) ·A−1(θ)) =

∂A(θ)
∂θi

A−1(θ) +A(θ)
∂A−1(θ)
∂θi

= 0

from which immediately follows that

∂A−1(θ)
∂θi

= −A−1(θ)
∂A(θ)
∂θi

A−1(θ).

Using the identity vec(ABC) = (CT ⊗A)vec(B), we infer

∂

∂θi
vec[A−1(θ)] = −[A−T (θ)⊗A−1(θ)]vec[

∂A(θ)
∂θi

],

implying

d

dθ
vec[A−1(θ)] = −[A−T (θ)⊗A−1(θ)]

d

dθ
vec[A(θ)].

This proofs the claim.

A. Proof of proposition 4.2

We will first introduce the notation θT =
[
θTA θTB

]
where θA only contains the parameters used to define A(ξ, θ)
and θB those to define B(ξ, θ). For brevity, we will drop the
dependency of P , B and A on ξ(ωk) from here on. Observe
that with this, we can write

Mk(θ) =
[

∂
∂θA

vec[P (θ)] ∂
∂θB

vec[P (θ)]
]

Using the identities (9a) and (9b), we rewrite this to

Mk(θ) =
[[
BT (θ)⊗ I

] ∂

∂θA
vec[A−1(θ)]

[
I ⊗A−1(θ)

] ∂

∂θB
vec[B(θ)]

]
. (22)

We will derive expressions for ∂
∂θA

vec[A−1(θ)] and
∂
∂θB

vec[B(θ)]. Application of lemma 8.1 yields

∂

∂θA
vec[A−1(θ)] =

[
−A−T (θ)⊗A−1(θ)

] ∂

∂θA
vec[A(θ)]

=
[
−A−T (θ)⊗A−1(θ)

]
·

·
[
Ipp×ppξ(ωk)na−1 . . . Ipp×ppξ(ωk)0

]
=
[
−A−T (θ)⊗A−1(θ)

]
·

·
([

Ip×pξ(ωk)na−1 . . . Ip×pξ(ωk)0
]
⊗ Ip×p

)
.

Furthermore, we derive that
∂

∂θB
vec[B(θ] =

[
Imp×mpξ(ωk)nb . . . Imp×mpξ(ωk)0

]
=
[
Im×mξ(ωk)nb . . . Im×mξ(ωk)0

]
⊗ Ip×p.

With this, we express the first element of Mk(θ) in (22) as[
−BT (θ)⊗ I

] [
−A−T (θ)⊗A−1(θ)

]
·

·
([

Ip×p(ξ(ωk)na−1 . . . Ip×pξ(ωk)0
]
⊗ Ip×p

)
=
[
−PT (θ)ξ(ωk)na−1 . . .

. . . −PT (θ)ξ(ωk)0
]
⊗A−1(θ),

and the second element of Mk(θ) in (22) as[
I ⊗A−1(θ)

]
·

·
([

Im×mξ(ωk)nb . . . Im×mξ(ωk)0
]
⊗ Ip×p

)
=
[
Im×mξ(ωk)nb . . . Im×mξ(ωk)0

]
⊗ A−1(θ).

Combining these results, and using the identity[
A1 ⊗B A2 ⊗B

]
=
[
A1 A2

]
⊗B, we infer

Mk(θ) = Φk(θ)T ⊗A−1(θ), (23)

which proves the claim.
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Fig. 1. Results with the AMB spindle system: amplitude plot of the FRF data G(ωk) (blue), the Schur weighting Ws(ωk) (black dash-dotted) and the
estimated model P (ξ(ωk), θ̂) (red).
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