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Abstract. The identification of dynamical systems on the basis of data, measured
under closed-loop experimental conditions, is a problem which is highly relevant in
many (industrial) applications. Initiated by an emerging interest in the area called
’identification for control’, classical prediction error identification methods have been
extended to also handle the problem of identifying approximate models from closed-
loop observations. In this paper the several procedures that have resulted from this
research are reviewed and their characteristic properties are compared. Additionally
it is discussed which role closed-loop identification can play in the identification of

(optimal) models for (robust) control design.
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1. INTRODUCTION

Many industrial processes operate under feedback con-
trol. Due to unstable behaviour of the plant, required
safety and/or efficiency of operation, experimental data
can only be obtained under so-called closed-loop con-
ditions. This applies not only to many industrial pro-
duction processes like e.g. paper production, glass pro-
duction, and chemical separation processes like crystal-
lization, but also to mechanical servo systems as robotic
manipulators and high precision motion control systems
in e.g. audio and CD-ROM disc drives. Besides, many
processes in non-technical areas, as e.g. biological and
economic systems, involve inherent feedback loops that
can not be manipulated and/or removed.

Identification methods for dealing with closed-loop ex-
perimental data have been developed in the seventies
and eighties, see e.g. Gustavsson et al. (1977) and S6-
derstrém and Stoica (1989) for an overview. These “clas-
sical” methods are typically directed towards solving
the consistency problem, considering the situation that

plant and disturbance model can be modeled exactly
(system is in the model set).

Initiated by an emerging interest in the identification
of models that are particularly suitable for model-based
(robust) control design, renewed attention has been given
lately to the problem of closed-loop identification. There
is a number of arguments to prefer closed-loop experi-
ments over open-loop ones, in case one is interested in
model-based control design. These arguments comprise
aspects of bias and variance, control of (input and/or
output) signal power during experiments, input shaping,
and the fact that a controller can linearize the (possibly
nonlinear) plant behaviour in a relevant working point,
thus enabling accurate linear modelling.

Unlike the classical situation, attention is now also given
to properties of identified approximate models, handling
the -more realistic - situation that plant and noise dy-
namics are not exactly present in the model set consid-
ered. Accounts of this area are given in the survey papers
Gevers (1993) and Van den Hof and Schrama (1995).

In this paper recent results on closed-loop identification
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methods are discussed, leading to a “consumer’s guide”
that shows which method to prefer in which situation.
Aspects of bias and variance are considered, as well as
more algorithmic type aspects like: can attention be re-
stricted to fixed order model classes, can unstable (but
stabilized) plants be handled, and what kind of knowl-
edge is presumed to be available a priori? It will be
indicated in which way the “modern” methods are gen-
eralizations of “classical” ones.

Additionally the relevance of a closed-loop experimental
setup for identifying control-relevant models will be dis-
cussed, by considering aspects of asymptotic bias and
variance of nominal models, as well as aspects related
to the construction of uncertainty models for (robust)
control design.

Attention will be restricted to identification criteria orig-
inating from the main-stream prediction error frame-
work (Ljung, 1987). However, many of the structural
and parametrizational issues involved are directly appli-
cable also in other identification frameworks, as e.g. set
membership identification (Milanese and Vicino, 1991),
and worst-case identification (Mékila, et al, 1995).

2. PRELIMINARIES

The experimental setup to be considered in this paper
is depicted in Figure 1.
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Fig. 1. Closed-loop configuration.

In this configuration the external signals r; and r2 can
be either a tracking signal, a setpoint or a noise distur-
bance on the regulator/process output. v is a (stochas-
tic) noise disturbance that is modeled as a filtered white
noise: v(t) = Hp(g)e(t) with Hy a monic stable and sta-
bly invertible filter, and e a sequence of independent
identically distributed random variables (white noise)
with bounded moments and variance Aq. ¢ is the forward
shift operator: qu(t) = u(t + 1). The external signals r;,
r, are assumed to be uncorrelated with the noise distur-
bance v.

The two signals ry, ro will often be collected into one
signal:

r(t) == ri(t) + ClgIr2(t). (1)

Then the feedback law can be written as:
u(t) = r(t) — C(g)y(t), 2

and the closed-loop system equations are:

y(t) = GoSor(t) + SoHoe(t) 3)
u(t) = Sor(t) — CSpHoe(t) (4)

with the sensitivity function Sp = (1 + CGo)™'.

It will be assumed that the closed-loop system is inter-
nally stable, meaning that the four transfer functions
in (3)-(4) are stable, i.e. analytic in |z| > 1. In order
to avoid technicalities, it will also be assumed that the
product GoC is strictly proper, which means that either
C or Gy contains a time delay.

The information that is typically available in a closed-
loop identification problem can be characterized in sev-
eral levels:

e Measurements of u and y;

e Knowledge about excitation properties of ry, rs;
o Measurements of ry, r5;

o Knowledge of C.

The identification objective will generally be the con-
struction of a model of the transfer function Gy(z) and
possibly Hg(z). Sometimes one may also wish to deter-
mine the controller C(z) in the feedback path.

3. CLASSICAL SOLUTIONS

The typical problem in closed-loop identification is the
fact that the plant input signal u is correlated with the
output noise disturbance v. This is also the reason why a
nonparametric (spectral} estimate of Gy, obtained from
direct operation on u ad y, will deliver a plant esti-
mate that is a weighted average between Gy and —1/C
(Soderstrom and Stoica, 1989). Therefore, for nonpara-
metric estimates of G, an external excitation signal r
(either through or r; or through ry) is required to pro-
vide an unbiased estimate of Gy through

@(ei“’) iz 4L

with <i>y,. and @u,. spectral estimates of the correspond-
ing cross-spectra.

In parametric identification three approaches have been
followed (Soderstrém and Stoica, 1989):

¢ Direct identification
¢ Indirect identification
¢ Joint input/output identification

of which the direct method is most popular. Here one
simply applies the standard (prediction error) identifica-

! When there is no risk of confusion, the arguments ¢ will be
discarded
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tion procedure without taking account of the presence of
a feedback controller. A parameter estimate is obtained
by

. 1 )

Oy = arg min v ;6 (t,6)
with e(t,0) = H(g,8) " [y(t) — G(q,0)u(t))-
This direct identification approach has a number of in-
teresting properties. If the system S := (G, Hp) is present
in the model set M := {(G(q,9), H(q,8)),0 € O}, then
a consistent estimate is obtained in each of the following
situations

¢ a sufficiently exciting signal ry or ry is present;

e C is a controller of sufficiently high order;

e C is a controller that switches between several set-
tings during the experiment.

In this situation it is allowed that C is a nonlinear
and/or time-varying controller.

However in the situation that S ¢ At the properties of
the direct method collapse, and even in the situation
that the plant Go can be modeled exactly within M,
consistency of G(g,8y) is lost if the noise model is mis-
specified.

This can be visualized by expressing the asymptotic
identification criterion in the frequency domain. Fol-
lowing the standard prediction error framework (Ljung,
1987), it reads that 8y — 6* w.p. 1 for N — oo, where
6" = argming 5= ["_®.(w,8)dw. For the direct identifi-
cation method it can be verified that

_ 1So/*1Go — G(8)I?

| Ho!*|Sol*
&, +
|H(8)]?

T HE@)PISO)?

. Ao

where the arguments e* are suppressed for brevity, and
S{q,60) = (1 + CG(q,8))"! is the sensitivity function of
the parametrized model. If Gy can be modeled exactly,
i.e. Go € G, it can not be concluded that consistency
of G will result. This is due to the fact that G(q,8)
appears in both terms of the integrand (in the second
term through S(g,8)) and so any misfit in H(q,8) will
be compensated for by G(g,8).

The above characterization of the asymptotic bias is
rather implicit. A more explicit expression is presented
by Ljung (1993) for the situation of a fixed noise model
H(q,8) = H.(q):

oy
|H.[?

- . _1_ r - - 2
0" = argmin / Go - B - GO —% dw (5)

with B = My(Ho — HJ)Xo

and M, the causal stable part of CSgHp/®,. This ex-
pression shows that the plant model will converge to a
biased estimate Gy — B, where the bias term is deter-
mined by the noise level in the loop, the input signal
power, and the accuracy of the noise model. The bias
will thus be small when

¢ The noise model is an accurate description of Hy,
and/or
¢ The signal to noise ratio at the input u is large;

Summarizing, the direct method can provide good esti-
mates when one is willing to identify full order models
for both plant and noise dynamics. In case one is aim-
ing at approximate models or when one refrains from
modelling the full noise dynamics, the consequences are
that

o Gy is not identified consistently, and
» The bias expression that governs the identification
of G is not explicitly tunable by the user.

The latter aspect is particularly important when one
is interested in identifying reduced-order models that
approximate the original system in a predefined way,
as e.g. present in an open-loop identification using an
output error model structure, determined by

e(t,0) = L(g)y(t) - G(g,0)u(t)]

and L a stable prefilter that is applied to the input/output
data. For this situation it can be shown that

* H _‘_1___ f el 2 2
6" = argmin 2ﬂ/tG(, - G(O)2®u|LPdw  (6)
= argmin [[Go - GO)H. Ll

with H, a stable spectral factor of ®,; reduced-order
identification now involves an intrinsic model reduction
step with a (frequency weighted) norm that can be di-
rectly tuned by the user through designing ®, and/or
L.

The direct method of closed-loop identification is -in
some cases- also able to identify unstable plants. The
basic restriction here is that the predictor filters 1 —
H~(q,0) and H!(q,8)G(q, §) are uniformly stable. This
situation is satisfied when the system (Gy, Hy) and the
model structure are of type ARX or ARMAX; i.e. those
situations where G and H have a common denominator.
The lack of a consistency property in the situation Gy €
G and the desire to achieving more explicit bias expres-
sions has been the motivation to develop a number of
alternative identification methods, that relate to and ac-
tually generalize the classical methods of indirect and
joint i/o identification.
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4. ASSESSMENT CRITERIA FOR CLOSED-LOOP
IDENTIFICATION METHODS

The several closed-loop identification methods that will
be discussed in this paper can be evaluated with respect
to a number of different criteria. We will first present
these assessment criteria.

s Consistency of (G, H). This is a basic require-
ment. Whenever our model set is rich enough to
contain the data generating system (S € M), the
identification method should be able to consistently
identify the plant, under additional conditions on
excitation properties of the plant signals.

¢ Consistency of G. The ability to identify Gg con-
sistently in the situation Gg € G. This implies that
the consistent modelling of G is not dependent on
possible undermodelling or misspecification of Hp.
Particularly in situations where the disturbance pro-
cess v contains complex dynamics, this property is
favorable.

e Tunable bias expression. An explicit approxi-
mation criterion can be formulated that governs the
asymptotic ifo model G(g,8*) in a way that is not
dependent on ®,. This refers to an expression for
the asymptotic bias distribution, as also formulated
for open-loop experimental conditions in (6).

¢ Fixed model order. The ability of identification
methods to consider model sets § of models with a
fixed and prespecified model order. This property
is important when the application of the identified
model, e.g. in model-based control design, puts lim-
itations on the acceptable complexity of the model.

e Unstable plants. The ability to (consistently) iden-
tify unstable plants.

o Stabilized model (G(g,8*), C). This refers to the
situation that there is an a priori guarantee that the
(asymptotically) identified model G(g,6*) is guar-
anteed to be stabilized by the present controller C.

e Knowledge of controller C. This concerns the
question whether exact knowledge of the controller
is required by the considered identification method.

e Accuracy. The (asymptotic) variance of the model
estimates.

For the direct identification method, the corresponding
properties are listed in the first column of Table 1. Accu-
racy properties of the several methods will be discussed
separately in Section 6.

5. INDIRECT SOLUTIONS
5.1 Introduction

In this section a number of alternative methods will
be discussed, that are introduced in the literature over

the last couple of years. Al methods are still consid-
ered within the standard prediction error identification
framework (Ljung, 1987). They differ in the way that
the plant model is parametrized and in the way that
they deal with (removing) the noise contribution on the
input of the plant. The main difference with the direct
method, is that for indirect methods use is made of a
measurable external excitation signal. It will generally
be assumed that there is an external signal ry present in
the experimental configuration, that is sufficiently ex-
citing for identifying the plant dynamics. Alternative
experimental conditions will be discussed in section 7.

5.2 Two-stage method

The two-stage method introduced in Van den Hof and
Schrama (1993) is based on a rewriting of the system’s
equations in the following way:

¥(t) = Golg)u"(t) + So(q)u(t)
u(t) = u"(t) — C(q)So(g)v(t)
u”(t) := So{g)r1(t)

It is composed of the following two steps:

o Identify the transfer function between r, and u,
using a model structure

u(t) = 5(g, B)ri(t) + W(g, Blew(t)

Then the LS-estimate S(q, ﬁN) is used to simulate
a “noise-free” input signal, according to

@ (t) = S(g, v ) (2).

o In the second step the plant model is identified by
applying a LS criterion to the prediction error:

&y(t) = K(q,8)'[u(t) - G(q,0)a"(t)}.

The two identification steps in this procedure are “stan-
dard” open-loop identifications for which no special tools
are required; in both steps the noise contribution on the
“output” signals (u, resp. ¥) is uncorrelated to the input
signals (r,, resp. 4i").

As the estimate S(g, ﬁN) from the first step is only used
for simulation purposes of 4", one can adhere to a high-
order accurate modelling; the order of the plant model
will only be determined in the second step. The resulting
model is obtained by

Glg) =G(q,0n) and
H(q) = K(q,6n)S(g, An) ™"

where the latter equation stems from the fact that the
noise model K'(g,8y) is a model for the disturbance filter
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SoHy rather than for Hy only. If in the second step a
fixed (non-parametrized) noise model K., is chosen, then
the asymptotic parameter estimate §* satisfies

9)5 Bc)|2 71

6 :a.rgmgm/IGgSo X, ’2

where S(3") the asymptotically identified model in the
first step.

Both Gy (situation Go € G) and (Gy, Hp) (situation
S € M) can be identified consistently provided that in
the first step of the procedure a sufficiently rich model
set is chosen for modelling Sp. Under this condition, the
approximation criterion reduces to

SOI q’rl dw. (7)

- _ 2150]" @,
a° argmm/|Go G(8)] K. |2

This two-stage approach does not require knowledge
of the controller, while the model order of the result-
ing model in the second step of the procedure is fully
under control. The method has been successfully ap-
plied to several industrial processes as a compact disc
servo mechanism (De Callafon et al., 1993), a sugar cane
crushing plant (Partanen and Bitmead, 1995), and a
crystallization plant (Eek et al., 1996).

Whenever r» is available as an external signal instead of
r1, the results remain similar. In that case the role of Sy
will be taken over by the product C'Sp. The reconstruc-
tion of the noise model is then obtained by H(q,8n) =
K(Ql éN){l - G(QI éN)S((L ﬂN)]~l with S(Qv .BN) the es-
timate of C'Sp obtained in the first step.

5.3 Coprime factor identification

In the coprime factor approach the two steps of the pro-
cedure discussed above, are actually performed simulta-
neously. Starting from the system's equations

¥(t) = GoSor1(t) + Sov(?) (8)
u(t) = Sor1(t) — CSov(t) 9)

one can consider the one-input two-output identification
problem with r, as input signal and [y u]” as output.
This is an open-loop type of identification problem as
r and v are uncorrelated. By denoting Ny = GoSp and
D¢ = Sy, it appears that (Np, Dg) is a (rational) fac-
torization of Gy since Gp = Ny/Dj. The factorization is
called coprime (over RH ) if the two factors are stable
and there are no canceling unstable zeros, i.e. zeros in
|2| > 1 (Vidyasagar, 1985).

All open-loop identification results apply to this iden-
tification problem. This means that consistency for G
will be guaranteed -irrespective of the noise modelling-
provided that sufficiently large model sets are chosen
for the identification of GpSp and S and provided that
independently parametrized noise models are used.

When Ny and Dy are parametrized independently, the

estimated transfers N and D are not likely to contain
the same redundant dynamics that are present by con-
struction in the two factors Ny and Dj. Consequently,
when constructing the final plant model through G =
N /D the order of the model will increase to a level that
generally will be equal to twice the orders of N and D.

This problem can be overcome by considering an ap-
proach presented in Van den Hof et al.(1995). By con-
structing an auxiliary signal

z(t) := F(g)r:(t)
with F' a stable filter to be specified later, the system’s
equations can be rewritten into the form

y(t) = GoSo F ™ z(t) + Spu(t) (10)
u(t) = SoFa(t) - CSov(t). (11)

while F can be chosen such that the two factors No f :=
GoSoF~! and Dy p := SpF~! no longer exhibit redun-
dant dynamics. There are several options for doing this,
as e.g. choosing F such that Np r and Do r become
polynomial in ¢~!. An alternative that has better ro-
bustness properties is by considering normalized factor-
izations.

Definition 1. A factorization (N, D) is called a normal-
ized coprime factorization (ncf) it if satisfies
IN(e*)|? + |D(e*)| = 1 for all w.

One of the properties of ncf's is that they form a de-
composition of the system Gy in minimal order (stable)
factors. In other words, if Gp has McMillan degree n,
then the coprime factors of a ncf of Gy will also have
McMillan degree n.2? The following result is taken from
Van den Hof et al.(1995).

Proposition 1. Let

F(g) := D.(q) + C(g)N=(q) (12)

with (N, D;) a coprime factorization of a model G, =
N:/D. that is stabilized by C. Then

(a) (No,r, Do r) is a coprime factorization of Go;

2 In the exceptional case that Go contains all-pass factors, (one
of) the ncf’s will have McMillan degree < n, see Tsai et al. (1992).
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(b) If (N, D)} is a ncf of Gy then (Mg p, Dy ) is nor-
malized.

Apparently, knowledge of Gy is required to construct
ncf’s (Np,r, Do, ). If these ncf’s are accessible, then a
model parametrization of N{g,8) and D(q,8) with a
common denominator is justified. This leads to the fol-
lowing algorithm:

(1) Construct a high order estimate of G, of Gy that
is stabilized by C, and construct a data filter F
according to {12) on the basis of a ncf {N,, D;) of

.-

(2) Construct the auxiliary signal z = F(q)r;(¢):

(3) Identify a one-input two-output model in the model
structure determined by

[ Ky(0,8) [y(t) - N(g,8)(t)]
£(t,6) = [Kﬁ(g,e)"[u(t) ~ D(g,8)z(t)]

where N(q,6) and D(q, ) are parametrized in terms
of polynomial fractions and with a common denom-
inator:

A(g™',9)

B(¢g™',8)
D(g1,6)

N(q’e) = D(q__l,g):

D(q,0) = (13)
with A, B and D polynomials in ¢~! with prespeci-
fied model orders n, n and m. The finally estimated
plant model of order n is then given by

- B(Q"’,ézv).
A(g~1,0n)

K,(¢q,6) and K,(q,8) are the noise models in the
two transfer functions.

The common denominator parametrization (13) can also
be realized in a one-input, two-output state space model
(4, B,C, D), with

~dy —dy -+ —dm 1
i 0o - 0 0
A= . . B = .
0 0 1 o 0

by by 0 b
C"[ar"ano] D'[ﬂo]'

In step (1) of the algorithm, exact knowledge of Gy is
actually replaced by a (high order) estimate of Gg. A
possible inaccuracy in this step will have an effect on the
final estimate G(g,n) that can be bounded in terms of
the gap-metric. For more details one is referred to Van
den Hof et al.(1995).

When using fixed noise models, i.e. K;{(g,0) = Ky.(q)
and K,(g,8) = K..(g), it can be verified that a least

squares identification criterion will yield the asymptotic
parameter estimate 6 = argming 3= [* ®,(w)dw with

1GoSo — N(®YF|? 1Sy — D(®)FJ? }
$, = + ®,.
{ [Kyal? [Kuel?

When also noise models are estimated, a model of Hy
can be constructed by:

H(q.6v) = (14 CG6) K, (a),

while additionally an estimate of the controller can be
obtained through: C(g) = [F~! — D|/N.

The coprime identification method has some relation
with the “classical” joint i/o method; the plant signals u
and y are modeled with external signals r, e as inputs,
whereas in the joint i/o method the plant signals are
modeled as functions of two unmeasurable {noise) sig-
nals. Due to the fact that plant and controller are rep-
resented in terms of stable rational factors, there are no
additional problems in handling unstable plants and/or
unstable controllers.

5.4 Identification in dual Youla/Kucera parametrization

There is yet another parametrization of the data gen-
erating system, that is closely related to the coprime
factor framework described above. When the controller
C is known, then the set of all linear plant models that
are stabilized by C' can be parametrized by

G =T (15)

where (N,,D,) is a coprime factorization of just any
model stabilized by C' = N./D., and R varies over the
class of stable transfer functions. For the parametriza-
tion of all stabilizing controllers, this parametrization is
known as the parametrization of Youla or Kucera (Des-
oer et al., 1980). Its use in identification has been in-
troduced by Hansen and Franklin {1988) and further
exploited in Schrama (1992) and Lee et al. {1993).

By solving R from (15) for a given system Gy, it follows
that the corresponding (unique) R satisfies:

= T+ CCo)D,’ (16)

and additionally, that the two rational factors in (15)
satisfy
N: + DRy = GoSo( D + CNy) (17)
D; - N.Ry = So(D, + CNy). (18)

Note that these are exactly the same expressions as the
two coprime factors that represent Gy in the coprime
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factor approach. The difference is now, that the redun-
dancy in the two separate factors is removed and a single
stable transfer function Ry remains. Substituting (17)
and (18) in the system’s equations (10), (11) and denot-
ing

2(t) := (De + G Ne) M (y(t) — Gru(t))

it follows after some manipulation that

z(t) = Ro(g)z(t) + Ko(g)e(t) (19)

with Ky = D;lSOH(),

It is important to note that z(t) and z(t) can simply be
reconstructed from measured data using knowledge of
the controller, and that z(t) and e(t) are uncorrelated.
As a result, Ry (and possibly Kg) can be identified by
standard open-loop techniques, on the basis of available
reconstructed signals z and z.

The transfer function Ry is a particular closed-loop trans-
fer function. For a specific choice of G, the method sim-
plifies to a classical indirect method as shown in the
following example.

Ezample 1. If C is stable, then G, = 0 is an {auxiliary)
model that is stabilized by C. By choosing N, = 0,
D, = D, =1 and N, = C the transfer function Ry
becomes Ry = Go/(1 + CGy), being the (closed-loop)
transfer function from r, to y. In this case z(t) = y(t)
and z(t) = r (¢).

In Van den Hof and de Callafon (1996) it is shown how
particular choices of factorizations of G, and C lead to
different closed-loop transfer functions to be identified,
also applicable to the multivariable situation.

In the identification of Ry and K, the related prediction
error will be

e(t.8) = K(q,8)7'(z(t) - R(g,0)=(t)],  (20)

and identified models R, K will be used to construct the
identified plant model according to

. N.+ D.R
D, - N.R

H=[1+GCD.K.

and (21)

In the situation of a fixed noise model, K(g,0) = K.,
the asymptotic parameter estimate 8* satisfies: §* =
argming 3= [7 ®(w)dw with

|Ro — R(6)I*

¢ (w) = |K.|2

“I>z;

which after some manipulations using the expressions
for Ry, R(6) and z can be shown to reduce to

2

®,.

q’f(w):H Go G(6) ] 1

1+CGy, 1+CG(9)| D.K.

Note that this expression is independent of the chosen
auxiliary model G;. One of the particular advantages of
this approach, is that every estimate R that is stable,
will provide a plant model G that - by construction- is
stabilized by the controller C'. This is due to the partic-
ular Youla/Kucera parametrization.

The main problem of this approach is that the order
of the identified model can become unnecessarily large.
The step (21) from an estimated R (of specified order)
to a plant model G, will cause the model order to in-
crease severely. This also holds for the classical indirect
method.

5.5 Tailor-made parametrization

Indirect identification requires two separate steps: (1)
identification of a “closed-loop” transfer function, and
(2) recalculation of the open-loop plant model. The two
steps can be combined into one, by using a tailor-made
parametrization for the closed-loop system, using knowl-
edge of the controller to parametrize the closed-loop sys-
tem in terms of open-loop plant parameters.

This leads to the prediction error:

G(g,6)

€(t.9) = K@) - 5550

n(t)). (22)

With this tailor-made parametrization, least squares es-
timation will also require a tailor-made optimization al-
gorithm, as the model set is parametrized in a structure
that is different from the standard (open-loop) model
sets.

For a fixed noise model K.(q) it follows directly that the
asymptotic bias distribution is governed by:

®,,

- . l f - 2
0" = argmin - [ 15060 - SO)G(O) Tt

Consistency properties of this identification method can
be shown by applying the standard (open-loop) predic-
tion error framework. The price that has to be paid is
that one has to deal with a complicated parametrized
model structure (22), with its resulting computational
burden. Additionally, a problem of lack of connected-
ness of the parameter space can occur. When G(q,8)
is parametrized as a quotient of two polynomials with
free coefficients, the region of # for which the transfer
function TR%%%WE is stable can be composed of two
(or more) disconnected regions. This can complicaterthe
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identification of an accurate model severely. The prob-
lem can be avoided by using a model order for G(q,8)
that is not smaller than the order of the controller (Van
Donkelaar and Van den Hof, 1997).

This method has also been analyzed in a recursive im-
plementation in Landau and Boumaiza (1996).

One can make further use of knowledge of the closed-
loop structure by also parametrizing the noise model
K(q,8) in terms of its open-loop parameters:

H(g,0)

Kad = Zgca s

As indicated in van Donkelaar and Van den Hof (1997),
substituting this expression into (22), leads to

e(t,0) = H™'(q,0)[y — G(q,8)(r ~ Clq)y)]
=H"q,0)[y - G(q,0)u] (23)

and this expression is exactly the same as the related
one for the direct identification method. As a result,
the two identification methods become equivalent when
using this specifically parametrized noise model.

6. BIAS AND VARIANCE ASPECTS
6.1 Bias

The indirect methods presented in section 5 show ex-
pressions for the asymptotic bias distribution that are
very much alike. When using fixed (non-parametrized)
noise models during identification, consistent plant mod-
els of G can be obtained, and the bias distribution has
the form?®

?,,
K[

RS T NV )
6 = argmin 27T/IS()G0 S(@)G(6)] dw.(24)

By designing the (fixed) noise model K, (or the sig-
nal spectrum &, ), this bias expression can explicitly be
tuned to the designer’s needs. However the expression is
different from the related open-loop expression (6). In-
stead of a weighted additive error on Gy, the integrand
contains an additive error on GoSq. Straightforward cal-
culations show that

GoSo — G(8)S(6) = So[Go — G(8)]5(6),

so that the asymptotic bias distribution can be charac-
terized by

Co-G@)el
(14+ CGo)(1+CGO)K. "

0* = argmin || 25)

3 Details vary stightly over the several identification methods.

o

10" 10"

Fig. 2. Typical curve for Bode magnitude plot of sen-
sitivity function Sy (solid) and related complemen-
tary sensitivity GoC/(1 + CGy) (dashed).

This implies that in the (indirect) closed-loop situation,
the additive error on Gy is always weighted with Sp.
Thus emphasis will be given to an accurate model fit in
the frequency region where Sy is large and the identi-
fied model will be less accurate in the frequency region
where Sp is small. In Figure 2 a typical characteristic of
So and closed-loop transfer GoC/(1 + CGy) is sketched.
This illustrates that emphasis will be given to an accu-
rate model fit in the frequency region that particularly
determines the bandwidth of the control system. In this
area (where |Sp{ > 1), the noise contribution of v in the
output signal y is amplified by the controller.
According to Bode's sensitivity integral {Sung and Hara,
1988) for a stable controller:

/log |S(e™)| dw = ¢ (constant)
0

with ¢ determined by the unstable poles of the plant,
and ¢ = 0 for Go stable. This implies that the atten-
uation of signal power in the low frequency range, will
always be "compensated” for by an amplification of sig-
nal power in the higher frequency range.

The aspect that closed-loop identification stresses the
closed-loop relevance of identified (approximate) mod-
els, has been given strong attention in the research on
“identification for control”.

Whereas direct identification needs consistent estima-
tion of noise models in order to consistently identify Gy,
indirect methods can do without noise models. Incorpo-
ration of noise models in indirect methods is very well
possible, but this will result in bias distributions that be-
come dependent on the identified noise models as well
as on (the unknown) ®,.

6.2 Variance
For analyzing the asymptotic variance of the transfer

function estimates we consider again the prediction er-
ror framework (Ljung, 1987) that provides variance ex-
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pressions that are asymptotic in both n (model order)
and N (number of data). For the direct identification
approach, and in the situation that S € M this deliv-
ers:

L -1
G(e™) n ¢, (w) q’eu(w)} ‘
T\ ~ — . 26

cov (H(e"")) N ) [%(w) o (26)
The following notation will be introduced:

u(t) = u"(t) + ut(t)

with u” := Sp(q)r; and u® := —-CSp(g)v and the re-
lated spectra @7 = |Sp|*®,, and ®%, = |CSy|*®,. Using

the expression &,, = —~CSgHgAp, (26) leads to (Ljung,
1993; Gevers et al., 1997):

é nd, 1 (CS;HO)'
CNE)TNE | CSoH, <2 |
Ao
and consequently
- n ¢, - n &, o,

This shows that only the noise-free part u” of the input
signal u contributes to variance reduction of the transfer
functions. Note that for 4" = u the corresponding open-
loop results appear.

In Gevers et al. (1997) it is shown that for all indirect
methods presented in section 5, these expressions remain
the same. However, again there is one point of difference
between the direct and indirect approach. The indirect
methods arrive at the expression for cov(G) also without
estimating a noise model (situation Gy € G), whereas
the direct method requires a consistent estimation of
Hy for the validity of (27).

The asymptotic variance analysis tool gives an appeal-
ing indication of the mechanisms that contribute to vari-
ance reduction. It also illustrates one of the basic mech-
anisms in closed-loop identification, i.e. that noise in the
feedback loop does not contribute to variance reduction.
Particularly in the situation that the input power of the
process is limited, it is relevant to note that only part
of this input power can be used for variance reduction.
This has led to the following results (Gevers and Ljung,
1986):

o If the input power is constrained then minimum
variance of the transfer function estimates is achieved
by an open-loop experiment;

o If the output power is constrained then the optimal
experiment is a closed-loop experiment.

Because of the “doubly asymptotic” nature of the re-
sults (N, n — oo), this asymptotic variance analysis tool

is also quite crude.

For finite model orders, the variance results will likely
become different over the several methods. The direct
method will reach the Cramer-Rao lower bound for the
variance in the situation § € M. Similar to the open-
loop situation, the variance will typically increase when
no noise models are estimated in the indirect methods.
This will also be true for the situation that two - inde-
pendent - identification steps are performed on one and
the same data set, without taking account of the rela-
tion between the disturbance terms in the two steps.
Without adjustment of the identification criteria, the
two stage method and the coprime factor method are
likely to exhibit an increased variance because of this.
For finite model orders and the situation S € M, it is
claimed in Gustavsson et al. (1977) that all methods
(direct and indirect) lead to the same variance; however
for indirect methods this result seems to hold true only
for particular (ARMAX) model structures (Ljung and
Forssel, 1997).

7. OVERVIEW AND EVALUATION OF
PROPERTIES

The assessment criteria as discussed in section 4 have
been evaluated for the several identification methods,
and the results are listed in Table 1.

The methods that are most simply applicable are the
direct method and the two-stage method. When con-
siderable bias is expected from correlation between u
and e, then the two-stage method should be preferred.
For the identification of unstable plants the coprime
factor, dual-Youla/Kucera and tailor-made parametri-
zation method are suitable, of which the latter one seems
to be most complex from an optimization point of view.
When approximate -limited complexity- models are re-
quired, the coprime factor method is attractive. When
additionally the controller is not accurately known, the
two-stage method has advantages.

All methods are presented in a one-input, one-output
configuration. The basic ideas as well as the main prop-
erties are simply extendable to MIMO systems.

The basic choice between direct and indirect approaches
should be found in the evaluation of the following ques-
tions:

(a) Is there confidence in the fact that (Go, Ho) and e
satisfy the basic linear, time-invariant and limited
order assumptions in the prediction error frame-
work?

(b) Is there confidence in the fact that C operates as a
linear time-invariant controller?
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Direct | Two-stage | Copr.fact. | Indir/Dual-Y.K. | Tailor-m
Consistency (G, H) + + + + ol
Consistency G - + + + os
Tunable bias - + + + +
Fixed model order 4 + o3 - +
Unstable plants 0! -2 + + +
(G(8*), C) stable - o/+4 +
C assumed known no no no yes yes

Table 1. Main properties of the different closed-loop identification methods.

The direct method takes an affirmative answer to (a)
as a starting point. Its results are not dependent on
controller linearity; however the method requires exact
modelling in terms of question (a). The indirect meth-
ods are essentially dependent on an affirmative answer
to (b), and might be more suitable to handle depar-
tures from aspect (a). So far the experimental setup
has been considered where a single external signal r; is
available from measurements. In all methods the situ-
ation of an available signal r, (in stead of r,) can be
treated similarly without loss of generality. A choice of
a more principal nature is reflected by the assumption
that the controller output is measured disturbance free.
This leads to the (exact) equality

r=u+ C(q)y.

The above equality displays that whenever u and y are
available from measurements, knowledge of r and C is
completely interchangeable. I.e. when r is measured, this
generates full knowledge of C, through a noise-free iden-
tification of C' on the basis of a short data sequence
r,u,y. Consequently, for the indirect methods that are
listed in Table 1, the requirement of having exact knowl-
edge of C is not a limitation.

This situation is different when considering an experi-
mental setup where the controller output (like the plant
output) is disturbed by noise. Such a configuration is
depicted in Figure 3, where d is an additional (unmea-
surable) disturbance signal, uncorrelated with the other

external signals 7 and v.
The appropriate relation now becomes

r+d=u+C(qy

1 Only in those situations where the real plant (Go, Ho) has an
ARX or ARMAX structure.

2 Not possible to identify unstable plants if in the second step
attention is restricted to independently parametrized G and K.
3 An accurate (high order) estimate of Go as well as knowledge
of C is required; this information can be obtained from data.

4 For the indirect method, stability is guaranteed only if C is
stable.

5 Consistency holds when the parameter set is restricted to a
connected subset containing the exact plant vector .

Fig. 3. Closed-loop configuration with disturbance on
controller output.

and apparently now there does exist a principal differ-
ence between the information content in r and in knowl-
edge of C. Two situations can be distinguished:

¢ 7 is available and C is unknown. In this case the in-
direct identification methods have no other option
than to use the measured r as the external signal
in the several methods. In this way the disturbance
d will act as an additional disturbance signal in the
loop that will lead to an increased variance of the
model estimates.

¢ C is exactly known. In this case the signal u + Cy
can be exactly reconstructed and subsequently be
used as the “external” signal in the several indi-
rect methods. In this way the disturbance signal
d is effectively used as an external input, leading
to an improved signal to noise ratio in the estima-
tion schemes, and thus to a reduced variance of the
model estimates.

When measured signals u and y are given, one can argue
what is the extra information content of having knowl-
edge of r and/or C. From the comparative results of
direct and indirect identification methods, one can con-
clude that this extra information allows the consistent
identification of Gy, irrespective of the noise model H.

An additional aspect that may favour closed-loop exper-
iments over open-loop ones, is the fact that a controller
can have a linearizing effect on nonlinear plant dynam-
ics; the presence of the controller can cause the plant to
behave linearly in an appropriate working point.
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For all identification methods discussed, the final esti-
mation step comes down to the application of a stan-
dard (open-loop) prediction error algorithm. This im-
plies that also the standard tools can be applied when
it comes down to model validation (Ljung, 1987).

Attention has been restricted to prediction error meth-
ods related to a least-squares type criterion; instrumen-
tal variable type estimators (Soderstrom and Stoica,
1989; Zheng and Feng, 1995) can lead to related results,
but are less suitable for specifying the asymptotic bias
distribution.

8. IDENTIFICATION FOR CONTROL
8.1 Introduction

In many situations models are identified for the purpose
of using them as a basis for subsequent model-based
(robust) control design. In that case the evaluation of
models has to be undertaken in the scope of the control
design. In other words: the best identified model (within
a specific class) is that model that leads to a controller
that controls the plant best. In the area of “identification
for control” this issue has been addressed from several
perspectives. A detailed analysis is outside the scope of
this paper. Here a brief discussion will be incorporated,
focusing on those aspects in which closed-loop experi-
ments are involved. For more extensive discussions the
reader is referred to Gevers (1993), Ninness and Good-
win (1995), Van den Hof and Schrama (1995) and the
references therein.

8.2 Asymptotic bias of nominal models

In many situations an identified model can only be an
approximation of exact plant dynamics, due to the fact
that the model set is restricted to models of limited
order. Next to the fact that “physical” plants will sel-
dom exhibit exact limited-order behaviour, this reduced-
order modelling mechanism can also be motivated by the
fact that in many (industrial) control situations, highly
complex plants can be controlled satisfactorily by con-
trollers that are based on fairly simple models. In con-
structing reduced order models one has to deal with the
issue of unmodelled dynamics, and the model has to be
tuned to accurately fit those plant dynamics that are
most essential for the subsequent control design. Sev-
eral schemes have been developed, directed towards the
identification of reduced order (nominal) models, most
of them based on the following mechanism.

Let ||J(Go, Cg)l be a control performance cost function
related to a closed-loop system with plant Gy and con-

troller Cs, being designed on the basis of a plant model
G. One can think of J as e.g. a weighted sensitivity
function:

14

J(Go,Cg) = ﬁm

(28)

It is the aim to achieve a minimum value of || J(Go, Cg)ll,
through an appropriate choice of G and Cs. Employing
the triangle inequality:

(G, Ce)ll = I19(Go, Cs) - J‘(G,C¢)|l| <
. SWGeCylis (29)
SNIG, Cll + 11 7(Go, Cg) ~ J(G, Cells

shows that the achieved performance cost ||J(Go, Ca)lt
can be minimized by minimizing each of the two sep-
arate terms on the right hand side of (29). Since such
a minimization over G involves the control design Cg,
this will generally be intractable. In addition, iterative
schemes have been proposed to minimize both terms
separately: minimizing ||J(G, C)|| over C for a fixed model
G, and minimizing the performance degradation term
IJ(Go,C) — J(G,C)|| over G for a fixed controller C.
In that case this degradation term can be given the in-
terpretation of a control-performance induced identifi-
cation criterion:

G= argmin [|J(Go, C) = J(G, O)|

which for the choice of J as given above takes the form:

V(Go - G)C “
(1+CG1+CGY|"

G= argmin

Note that for a 2-norm this criterion has the same struc-

ture as the bias expression for indirect closed-loop meth-

ods as shown in (25). By appropriate choice of ®,, and/or
K., in (25) the criteria can be made the same. This situ-

ation also extends to other choices of performance func-

tions J (Van den Hof and Schrama, 1995).

The message here is that the (reduced-order) model for
which the bias is optimally tuned to the control perfor-
mance cost for a given controller, is obtained by doing
closed-loop identification with an indirect identification
method.

8.3 Asymptotic variance of nominal models

From a variance point of view, optimal experiment de-
sign in view of an intended model application has been
analyzed in Gevers and Ljung (1986), Ljung (1987),
Hjalmarsson et al. (1996) and Gevers et al. (1997). In all
cases this concerns an analysis in the situation § € M,
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and both number of data and model order tend to in-
finity.

Considering a variance-based identification design crite-
rion

J(D) = /tr[P(w,D)r(w)]dw

-

where P(w, D) = cou([G(e™) H(e™)]T), and D denotes
the design choices with respect to the experimental con-
ditions, represented by {®,, ®..}, while ['(w) is a 2 x 2
Hermitian matrix reflecting the intended application of
the model. For this design criterion the following results
are available:

e If I'j3 = 0, (e.g. the control design is only based
on G and not on H), and if the power of the input
signal is limited, then the optimal experiment that
minimizes J(D) is an open-loop experiment with

%% = ¢. /Ty (w) @y (w).

For the control design criterion (28) this reduces to

ICeVl e
: ﬁ—;—(g;—c_—G—)rgﬁ,,(w) (30)

¢t =¢
(Ljung, 1987). .

o If the control design is only based on G and if
the output power is limited, then the optimal ex-
periment is a closed-loop experiment. If the plant
is minimum-phase, the optimal controller to apply
during identification is the minimum variance con-
troller (Gevers and Ljung, 1986).

o If I'i2(w) # 0, (the control design is based on both
G and H), then the optimal experiment is a closed-
loop experiment with an optimal controller that
can be characterized (Hjalmarsson et al., 1996).

It has to be noted that in the first situation, where open-
loop experiments are optimal, the required input spec-
trum (30) is proportional to the (unknown) sensitivity
function of the closed-loop to be constructed. For the
present controller, this input shaping is exactly achieved
by performing the experiment in closed-loop. However
thia also has the negative effect of feeding back the out-
put noise to the input.

The third situation provides an optimal controller to
apply during identification that generally will be de-
pendent on (unknown) plant information. This has mo-
tivated the proposition of an iterative mechanism of
identification and renewed (closed-loop) experiment de-
sign, being analyzed and illustrated in Hjalmarsson et al.
(1996).

8.4 Uncertainty structure of identified model sets

When models are used as a basis for robust control de-
sign, both a nominal model and a model uncertainty
characterization are required. In recent years attention
has been given to the quantification of model uncer-
tainty on the basis of experimental data, see e.g. Nin-
ness and Goodwin (1995) and the references therein. An
“optimal” choice of a model uncertainty set, would be to
collect all models that are not invalidated by the data
and the prior information on the system. However in
most cases this set can not be simply characterized in a
form that is manageable for a control design procedure.
Therefore one restricts attention to uncertainty sets of a
prechosen nature, such as e.g. additive or multiplicative
uncertainty, situated around a nominal model.

A general characterization of such a set is:

P1(G,7) ={G | G = f(G,A),|A(e")] < 7(w), Yw)

with 7 a positive real-valued function of w and f a linear
fractional transformation:

f(G,A) =G + PyAQ - PA) P, (31)

Although such an uncertainty set generally is denoted as
“unstructured”, the choice of f does provide the set with
a particular uncertainty structure. Note that an additive
uncertainty results through the choice Py = Pyy = 1,
P, =0.

For a particular choice of f and G, the “size” v of the
set has to be chosen as small as possible so as to con-
tain the real plant Gy. This situation is depicted in an
abstract way in Figure 4, where the shaded area reflects
the set of all unfalsified models which is encapsulated in
the uncertainty set P. Note that the former set is prin-
cipally implied by the measurement data, whereas the
latter set is partly just chosen by the user. It is clear that
there are many options for choosing P such that all un-
falsified models are contained. However in choosing this
P it is apparent that one should take account of the
performance cost function J, by avoiding the incorpora-
tion of (falsified) models (in the white area of Figure 4)
that lead to poor performance costs. Such incorporation
would lead to a control design with considerable conser-
vatism. For discussions on the role of the uncertainty
structure in this respect, see also Schrama (1992) and
Van den Hof et al. (1994).

For a given G, a performance-cost relevaqt uncertainty
structure is obtained, if for all G € Py(G,¥), J(G,C)
can be written as an affine expression in A, i.e.

J(G,C) = My + MpA (32)
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Fig. 4. Uncertainty set P4(G,7) (ellipsoid) and set of
unfalsified models (shaded area).

With J chosen as a (weighted) closed-loop transfer func-
tion, as e.g. in (28), this implies that there is a di-
rect linear relationship between the “size” -y of the un-
certainty set and the {frequency-dependent) worst-case
performance cost |J{G, C)| over the set, in terms of

sup  |J(G,C)| = |Mi(e™)| + v(w) | Male™}] V.

GeP(G,y)

In this way the “shape” of the uncertainty set is directly
tuned towards the performance criterion. An affine re-
lationship (32) can be achieved by using an uncertainty
structure that is based on the dual Youla/Kucera param-
etrization:

N+ D.Ag

PGy ={G|G= PoNog |Ag(e™)] < v(w)}

with C = N.D7' and G = ND~!. The expression for
G above is a particular form of linear fractional trans-
formation (31). For each G € P(G,v) it follows that

v
J(G,C) = - + MaAg
©.0) = 5+ MBr

N,
v < being a filter dependent only

D1+ CG)

on known elements. A data-based uncertainty modelling
procedure, should provide the smallest bound y(w) that
is required to guarantee that Gp is an element of this
set. This minimization of y{w) can be performed in a
closed-loop experimental setup, by applying a model un-
certainty estimation procedure to the Youla/Kucera pa-
rameter. In terms of the mechanism discussed in section
5.4 this refers to choosing the auxiliary model G, =
G. This motivates the use of closed-loop experimental
data not only for nominal model identification, but also
for control-relevant uncertainty bounding. The indicated
mechanism also extends to more general performance
cost functions, as shown in de Callafon and Van den
Hof (1997).

Aspects of model (in)validation, also in relation to con-
trol design, are treated e.g. in Smith and Doyle (1992)
and Ljung and Guo {1997).

with M, =

8.5 Model-free tuning of controllers

Another area where closed-loop experimental data is in-
volved in an identification-type problem is data-based
controller tuning. In the recent work of Hjalmarsson
et al.(1994) a (simply structured) controller is directly
tuned on the basis of a number of specifically designed
closed-loop experiments. This powerful approach has al-
ready delivered a number of interesting application re-
sults.

9. CONCLUSIONS

Closed-loop experimental conditions should not be con-
sidered as a degenerate or unfavourable situation for
identifying dynamical systems. There are many good
methods available, both for identifying consistent mod-
els, as well as for handling the situation of unmodelled
dynamics (approximate modelling). In this paper the
characteristic properties of both direct and indirect pro-
cedures have been evaluated on the basis of explicit as-
sessment criteria, including aspects of bias and variance.
Additionally it is shown that closed-loop experiments
can be particularly suitable in relation with model-based
control design. The identification procedures discussed
in this paper have been implemented in the Matlab tool-
box CLOSID (Van den Hof et al., 1997).
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