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Introduction — dynamic networks
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Introduction

Overall trend:

e Systems become more and more interconnected and large scale

* The scope of system’s control and optimization becomes wider
From components/units to systems-of-systems

* Modeling, monitoring, control and optimization actions become distributed

» Data is playing an increasing role in monitoring, decision making, control of
(highly autonomous) smart systems (machine learning, Al)

e - Learning models/actions from data (including physical insights when available)

TU/e



Introduction

Distributed / multi-agent control:

With both physical and communication links between
systems G; and controllers C;

How to address data-driven modelling problems in such a setting?

TU/e



Introduction

The classical (multivariable) identification problems[l]

open loop closed loop 14
v
— G —

Identify a model of G on the basis of measured signals u, y
(and possibly 7), focusing on continuous LT/ dynamics.

We have to move from a simple and fixed configuration
to deal with structure in the problem.

Wjung (1999), Séderstrdm and Stoica (1989), Pintelon and Schoukens (2012)

TU/e
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Network models

e dynamic elements with cause-effect

* handling feedback loops (cycles)

e centered around measured signals

e allow disturbances and probing signals
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D. Materassi and M.V. Salapaka (2012) WWW.momo.cs.okayama-u.ac.jp E.A. Carara and F.G. Moraes (2008) P.M.J. Van den Hof et al (2013) TU/
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Network models

o x(k+1) = Ax(k)+ Bu(k)
a,, Q21 X1
oy Gz |\ G e States as nodes in a (directed graph)
az3 & Gs 78 ey .
a“’z as1\ [ asA\NM Y77 e State transitions (1 step in time) reflected by a;;
X3 )37 X7 )2\l
as 77 0nQ 0 o
a\\az, \ 0 e e Transitions are encoded in links
X4 Oz Xg .l .
v e Effect of transitions are summed in the nodes
Oy X5 Q65
bss css e Self loops are allowed
Us ys

Actuation (u) and sensing (y) reflected by separate links
State space representation
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Network models

o x(k+1) = Ax(k)+ Bu(k)
a,, Q21 X1
Xz a1 Jdi16 Xs ' )
e | \as e Ultimate break-down of structure in the system
az3 a, s, g 78 a77
X3 )€ 237 x> (v7)| e to smallest possible level of detail
3
043\ \034 \ 97 076
2/ae\ ] L For data-driven modeling problems:
Oy X5 Q65
bss Css e Stronger role for measurable inputs and outputs
Us ys

¢ i/o dynamics can be lumped in dynamic modules
State space representation
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Network models

U
bi;
a,, Q21 X r1 Usg U5
G, | \J16 ) we w: w4 ws
X5 Xg wy oo 2 oo 3 4 Qo 5
O3 Jdsr dg s 21 32 > 54
aaz 051 dsgy a7z
037
X3 )¢ - X722
y GgS < Gga ——
as3\ U3z \ 9z Q76
Xy (P 1 Xg G?"j <
O44 x5 )~ 965
bss Css
us) (¥s Module representation [?!

State space representation %/ o
Compare e.g. classical signal flow graphs B!

[1] Goncalves, Warnick, Sandberg, Yeung, Yuan, Scherpen,... [3] S.J. Mason, 1953, 1955. TU/e
[2] VdH, Dankers, Goncalves, Warnick, Gevers, Bazanella, Hendrickx, Materassi, Weerts,...
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Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal

TU/e



14

Dynamic network setup

Ve V7 - module

external excitation
process noise
node signal
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Dynamic network setup

Ve V7 - module

external excitation
v,- process noise
node signal
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Dynamic network setup

Ve V7 - module

external excitation
Process noise
node signal
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Dynamic network setup

- module

external excitation
process noise
node signal
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Dynamic network setup

Basic building block:

wi(t) = Y Gh(@)wi(t) + v;(t) + u;(t)
kEN;
w;: node signal
v; : (unmeasured) disturbance, stationary stochastic process
u; : external excitation signal
G?k: module, rational proper transfer function, N; C {Z N [1, L]\{j}}

Node signals: wq, - wp,
Interconnection structure / topology of the network is encoded in Aj, 7 = 1,--- L

J. Gongalves and S. Warnick, IEEE TAC, 2008.
PVdH et al., Automatica, 2013.

TU/e



19

Dynamic network setup

Collecting all equations:

w1 0 GYy --- GgL w1 el r1
w2 — G(Z)l 0 " G2L w9 —I-HD €2 +R0 T2
wy, GOLI G%Z 50 G 0 wry, ep TK
Network gtrix G°(q)
w(t) = GO(q)w(t) + v(t) + RO(q();r(t); v(t) = H%(q)e(t); cov(e) = A
u(t

e Typically RV is just a (static) selection matrix, indicating which nodes have an excitation signal.
e The topology of the network is encoded in the structure (non-zero entries) of G°.

o 1 (u) and e are called external signals.

J. Gongalves and S. Warnick, IEEE TAC, 2008. TU
PVdH et al., Automatica, 2013. e
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Dynamic network setup

w:GOw+HOe—{—ROr

Assumptions:

Total of L nodes, no self-loops

Network is well-posed and stable, i.e.
(I — G°)~1 exists and is stable

Modules are dynamic, LTI, proper,
may be unstable

Disturbances can be correlated:
H?Y not necessarily diagonal

TU/e
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Example: Networks of (damped) oscillators

5

| w1 | (105} | W3
U1 U9 us
mq 7 mo % ms
= ==

Power systems, vehicle platoons,
thermal building dynamics, ...

Spatially distributed

Bilaterally coupled

TU/e



Example: decentralized MPC

.............

Yz

R.D. Gudi and J.B. Rawlings, AIChE Journal, 52(6), 2198-2210, 2008.

23

Decentralized MPC

2 interacting MPC loops

TU/e



Data-driven modeling

Many data-driven modeling
guestions can be formulated

Measured time series:
{wi(t) }i=1,...0; {rj®)}j=1,..K

TU/e
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Model learning problems

Under which conditions can we estimate the topology and/or
dynamics of the full network?

TU/e



26

Model learning problems

How/when can we learn a local module from data
(with known/unkown network topology) ? Which signals to measure?

TU/e
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Model learning problems

Where to optimally locate sensors and actuators,
and how to design experiments?

TU/e
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Model learning problems

Same questions for a subnetwork

TU/e
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Model learning problems

How can we benefit from a priori known modules?

TU/e
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Model learning problems

Fault detection and diagnosis; detect/handle nonlinear elements

TU/e
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Model learning problems

Can we distribute the computations?

TU/e



Dynamic network setup

Many data-driven modeling
guestions can be formulated

Measured time series:
{wi(t) }i=1,...0; {rj®)}j=1,..K

e Scalable algorithms

TU/e
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Dynamic network setup - graph

Nodes are vertices; modules/links are edges

Extended graph: s @*:z,:jc.b
(2)

including the external signals
and disturbance correlations

TU/e
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Dynamic network models - zooming

Increasing level of
detail

Decreasing structural
information

TU/e
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Dynamic network models — From SISO to MISO

Iy

Summation of “outputs” =2
Linear dynamics

MISO mappings (possibly nonlinear),

with additive disturbances

TU/e
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Disturbance modeling — reduced rank noise

e

How many white noises do we need to describe an

L-th dimensional disturbance process v?
dim(e) < dim(v)

If dim(e) < dim(v): reduced rank process

Appealing when dealing with large dimensions; 4
finding (few) causes of your observations (cf. dynamic factor analysis{t}[2])

Consequences:

e H(z)is nonsquare

e Spectal density ®,(z) := H(z)AH?T (z71) is singular over R(2)

[1] Deistler et al., EJC, 2010. TU
[2] Zorzi and Chiuso, Automatica 2017. e
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Disturbance modeling — reduced rank noise

e

There are two unique spectral factorizations now:

1. ®,(z) = H(z)AHT (z71) dim(e) < dim(v)
im(e) < dim(v

e H € REXL(2), monic;

o A € REXL singular;

2. ®,(z) := H(z)AHT (27 1)

o H € RLXP(2)
e A € RPXP regular;
e monicity scaling either through A= I, or through a p X p submatrix of ﬁ;

Reduced rank noise has consequences for identification algorithms!2!

[1] Weerts et al., Automatica, December 2018. TU/e

[2] Cao, Picci & Lindquist, Automatica, May 2023.
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Summary network modeling

Several different approaches to network modelling. For now: module framework

In view of data-driven modelling we extend the typical transfer function
approach to include structure (topology)

This raises an abundance of data-driven modeling challenges

that include structural issues like: selection of measured and excited nodes
(sensors and actuators)

An alternative modelling framework (diffusively coupled networks) will
be discussed later

Download and install the MATLAB toolbox SYSDYNET for running examples:
www.sysdynet.net

TU/e


http://www.sysdynet.net/
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Algorithms implemented in SYSDYNET App and Toolbox

4] TUfe Dynamic Network App
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Dynamic Network: Editor

Structural analysis and operations
on dynamic networks
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Edit and manipulate

Assign properties to nodes
and modules

Immersion of nodes, PPL test
Generic identifiability analysis
and synthesis

Predictor model construction
for single module ID

Beta-version to be downloaded from www.sysdynet.net

to be complemented with

estimation algorithms for
single module and

full network ID;

topology estimation
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